Spelling suggestions: "subject:"ht1"" "subject:"pht1""
1 |
Tissue- and Development-specific Expression of Proton-mediated Peptide Transporters in the Developing ChickenZwarycz, Bailey 27 July 2012 (has links)
PepT1, PepT2 and PHT1 are all members of the proton-coupled oligopeptide transporter family, which are important in the transport of amino acids in peptide form. PepT1 acts as a low affinity/high capacity transporter and PepT2 as a high affinity/low capacity transporter for di- and tri-peptides. PHT1 transports di- and tri-peptides as well as histidine. The objective of this study was to profile PepT1, PepT2 and PHT1 mRNA expression in the proventriculus, duodenum, jejunum, ileum, ceca, large intestine, brain, heart, bursa of Fabricius, lung, kidney, and liver in layer chicks on embryonic days 18 and 20 and days 1, 3, 7, 10, and 14 post-hatch. Absolute quantification real-time PCR was used to measure gene expression. PepT1 expression was greatest in the duodenum, jejunum and ileum. Over time, PepT1 expression increased in the duodenum, jejunum, ileum and large intestine and decreased in the ceca. PepT2 expression was greatest in the brain, aiding in neuropeptide homeostasis, and the kidney, aiding in the reabsorption of substrates. Over time, PepT2 expression increased in the bursa of Fabricius and decreased in the proventriculus, duodenum, jejunum and liver. In the small intestine during embryogenesis, PepT2 may function to transport di- and tri-peptides prior to the induction of PepT1. PHT1 expression was expressed in all tissues analyzed. Over time, PHT1 expression increased in the jejunum, large intestine, brain and liver and decreased in the proventriculus. The uptake of peptides in the developing chick is regulated by peptide transporters that are expressed in a tissue- and development-specific manner. / Master of Science
|
2 |
Caractérisation de transporteurs de phosphate chez des mutants d’Arabidopsis thaliana : étude de l’effet sur la tolérance aux métaux lourds / Characterization of phosphate transporters in Arabidopsis thaliana mutants : effect on tolerance to heavy metalsAyadi Robert, Amal 25 November 2016 (has links)
Arabidopsis thaliana, s’est adaptée à la variété des niveaux de Pi dans le sol en développant 9transporteurs de phosphates, membres de la famille PHT1, intervenant dans l’acquisition de cet ionpar les racines et sa translocation. Ces protéines révèlent une très forte homologie de séquence entre elles (plus que 61%). La présence de certains transporteurs de type PHT1 dans différents types d’organes ainsi que le chevauchement fréquent entre les divers membres de la famille PHT1 témoigne de la complexité de leurs rôles. De plus, leur redondance génétique et fonctionnelle empêche l’analyse de leur rôle spécifique. En vue de s’affranchir de ces obstacles, notre approche combine plusieurs stratégies génétiques avec l’insertion d’une construction RNAi inactivant plusieurs membres de la famille PHT1 et en particulier le cluster localisé sur le chromosome 5 (PHT1;1/1;2/1;3). Ces outils génétiques ont révélé aussi le fonctionnement des protéines PHT1 à la fois en tant que transporteurs à basse et à haute affinité, ce qui suggère que leur activité est contrôlée au niveau post-traductionnel. En cas de carence en Pi, ces lignées affichent des modifications physiologiques (biomasse, rendement,…) dues à une forte réduction affectant l’activité de l’influx en phosphate (80 à 96%). Ce travail suggère que la redondance génétique et les mécanismes de compensations pourraient protéger la plante de l’inactivation de PHT1. Il a aussi révélé que la perception systémique du Pi est déclenchée par des mécanismes en aval de l’activité des PHT1. / Arabidopsis thaliana absorb inorganic phosphate (Pi) from the soil through an active transport process mediated by the 9 members of the PHT1 family. These proteins share a high level of similarity (greater than 61%), with overlapping expression patterns. The resulting genetic and functional redundancy prevents the analysis of their specific roles. To overcome this difficulty, our approach combined several mutations with gene silencing to inactivate multiple members of the PHT1 family, including a cluster of genes localized on chromosome 5 (PHT1;1, PHT1;2 and PHT1;3). Physiological analyses of these lines established that these three genes, along with PHT1;4, are the main contributors to Pi uptake. Furthermore, PHT1;1 plays an important role in translocation from roots to leaves in high phosphate conditions. These genetic tools also revealed that some PHT1 transporters likely exhibit a dual affinity for phosphate, suggesting that their activity is posttranslationally controlled. These lines display significant phosphate deficiency-related phenotypes (e.g. biomass and yield) due to a massive (80 to 96%) reduction in phosphate uptake activities. These defects limited the amount of internal Pi pool, inducing compensatory mechanisms triggered by the systemic Pi starvation response. Such reactions have been uncoupled from PHT1 activity suggesting that systemic Pi sensing is most probably acting downstream of PHT1.
|
Page generated in 0.032 seconds