• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Characterization of Valyloxy Methoxy Luciferin for the Detection of Valacyclovirase and Peptide Transporter

Walls, Zachary F., Gupta, Sheeba Varghese, Amidon, Gordon L., Lee, Kyung Dall 15 October 2014 (has links)
An amino acid ester derivative of luciferin (valoluc) was synthesized to mimic the transport and activation of valacyclovir. This molecule was characterized in vitro for specificity and enzymatic constants, and then assayed in two different, physiologically-relevant conditions. It was demonstrated that valoluc activation is sensitive to the same cellular factors as valacyclovir and thus has the potential to elucidate the dynamics of amino acid ester prodrug therapies in a functional, high-throughput manner.
2

Cloning, Sequencing and Expression of a Porcine Intestinal Peptide Transporter in a Mammalian Cell Line

Klang, Judith Elisa 30 May 2003 (has links)
Absorption of dietary proteins can be met through the uptake of free amino acids or as small peptides. A peptide transport protein, PepT1, is responsible for the absorption of intact peptides arising from digestion of dietary proteins. PepT1 is driven by a H+-coupled transport system that allows for the absorption of small peptides through the intestinal brush border membrane. Screening of a porcine intestinal cDNA library with a sheep PepT1 cDNA probe resulted in the identification of three porcine PepT1 (pPepT1) cDNAs of varying sizes and sequences. Each variant cDNA isolated was cloned into a mammalian expression vector, sequenced, and expressed in Chinese hamster ovary (CHO) cells. Peptide transport was assessed by uptake studies using the radiolabeled dipeptide [3H]-Gly-Sar. Only one of the three cDNAs encoding for a protein of 708 amino acids induced H+-dependent peptide transport activity. Through computer analysis, a putative protein structure for pPepT1 was developed. The transporter has an unusual 13 transmembrane structure with the N-terminus located extracellularly and the C-terminus located intracellularly. Seven glycosylation sites and three protein kinase C phosphorylation sites are located throughout the protein. Expression of pPepT1 activity in CHO cells had a optimal peptide uptake at 18-24 hours. The transporter showed optimal uptake at a pH of 5.5-6.0. Eighteen different unlabeled dipeptides and tripeptides were found to inhibit the uptake of [3H] -Gly-Sar in competition studies. The IC50 of 13 of the dipeptides and two tripeptides ranged between 0.015 to 0.4 mmol/L. The exceptions were Lys-Lys, Arg-Lys, and Lys-Trp-Lys, which showed IC50 values greater than 1.37 mmol/L and appear to be poor substrates for pPepT1. All three of the tetrapeptides examined showed very high IC50 values and inhibition of the uptake of Gly-Sar was too small to measure even at a 10mM concentration. Dipeptides and tripeptides appear to be substrates for the porcine intestinal peptide transporter while tetrapeptides do not appear to be transported. / Master of Science
3

Gene Expression of the Intestinal Peptide Transporter 1 and Peroxisome Proliferator-Activated Receptor alpha Following Fasting/Refeeding and Ligand Administration in Chickens

Madsen, Sara Lindsly 12 January 2010 (has links)
The uptake of amino acids is mediated by amino acid transporters and the peptide transporter, PepT1. The nuclear receptor PPARα may play a role in the activation of PepT1. The objectives of this study were to evaluate the effect of a fasting/refeeding regimen and gavaging a PPARα ligand on expression of chicken PepT1 and PPARα. During the fasting/refeeding trial, chicks were placed on a 24h fast and then divided into 3 groups (Continuously Fasted (CF), Refed/Food Withdrawn, and Refed Adlib) and sampled 1, 2, 3, 5 and 7h post-fast. Expression of PepT1 and PPARα increased almost 2-fold post-24h fast (P < 0.002). The CF group had highest expression for both genes (P < 0.0001) suggesting a coordinate change in PepT1 and PPARα expression during fasting, indicating a possible regulatory role for PPARα of PepT1. Oral gavage trials utilizing PPARα ligand WY- 14643 were conducted with layers and broilers. For the layer trial birds were gavaged daily for 3 d with 50 mg WY-14643/kg in carrier (Ligand) or with just carrier (No Ligand) and sampled on d4. For the broiler trial, birds were gavaged daily with 25 or 50 mg WY-14643/kg or just carrier and sampled on d2 or d3 post gavage. No difference in PepT1 was observed between the Ligand and No Ligand groups. In the layer trial, PPARα decreased 6-fold (P = 0.005) in the Ligand group. Broilers treated with WY-14643 showed no effect of ligand. These results indicate a difference between layers and broilers in response to WY-14643. / Master of Science
4

Regulatory Balance Between the Peptide Trasporter, Pept1, and Amino Acid Transporter Gene Expression in the Enterocyte

Miller, Carin R. 29 May 2012 (has links)
Amino acids are assimilated by membrane-associated transporters into and out of enterocytes either in their free form or in the form of peptides. The peptide transporter, PepT1, is thought to be the major facilitator of peptide transport in the enterocyte. It is unknown if the peptide transporters and free amino acid transporters operate in a compensatory fashion to regulate the amino acid balance within the enterocyte. Therefore, the objective was to examine the regulatory balance between PepT1 and other peptide and free amino acid transporters in enterocytes. The Mouse Small Intestinal Epithelial (MSIE) cells are conditionally immortalized. It was found that MSIE cells express BoAT1, CAT1, CAT2, LAT1, y+LAT1, and y+LAT2, but not PepT1, EAAT3, Bo,+AT, or LAT2, making this model similar to the basolateral membrane of enterocytes. Growing MSIE cells at high temperatures did not affect the nutrient transporter gene expression profile of these cells. Thus, the human colon carcinoma (Caco-2) cell line was used as a small intestinal in vitro model for this study. These cells express PepT1, HPT1, PTR3 EAAT1, EAAT3, rBAT, Bo,+AT CAT1, LAT1, y+LAT1, y+LAT2, ABCC3, ABCC4, which increased from D0 to D21 post confluency, indicating cell maturation. In Caco-2 cells, PepT1 gene silencing was induced in Caco-2 cells. Despite an reduction of PepT1 gene (82%, P < 0.05) protein (96%), no significant difference in any peptide (HPT1, PTR3, ABCC3, ABCC4) or free amino acid transporters (EAAT1, EAAT3, rBAT, Bo,+AT, BoAT1, CAT1, CAT2, LAT1, LAT2, y+LAT1, y+LAT2) between Caco-2 cells treated with PepT1 siRNA and Caco-2 cells treated with Control siRNA was observed. These results suggest no compensation at the gene expression level of these transporters in response to a reduction of PepT1. To account for the limitations of an in vitro and PepT1 kockout mouse model, transgenic chicken models were pursued. Potential cPepT1 overexpressing, cPepT1 shRNA or control shRNA expressing G0 chickens were generated by embryo injection of pseudolentiviral particles followed by ex ovo egg culture. Overall, 9 potential G0 cPepT1 overexpressing chickens, 15 potential G0 cPepT1 shRNA expressing chickens, and 4 potential G0 control shRNA expressing chickens were generated. / Ph. D.
5

Tissue Distribution of a Peptide Transporter mRNA in Sheep, Dairy Cows, Pigs, and Chickens

Chen, Hong 21 August 1998 (has links)
To study the mRNA found in sheep omasal epithelium encoding for a peptide transport protein(s), a 446-bp cDNA fragment was cloned from sheep omasal epithelium RNA. The predicted amino acid sequence of this fragment was 85.8, 90.5, and 90.5 percent identical to rabbit, human, and rat PepT1, respectively. The fragment was radiolabeled for use as a probe to study the distribution of the mRNA in various tissues. Total RNA was extracted and mRNA was isolated from the epithelium of gastrointestinal segments and other tissues as indicated. Northern blot analysis was conducted using the radiolabeled probe. In sheep (5) and lactating Holstein cows (3), hybridization was observed with mRNA from the omasum, rumen, duodenum, jejunum, and ileum. The estimated size of mRNA was 2.8 kb. No hybridization was observed with mRNA from the abomasum, cecum, colon, liver, kidney, and semitendinosus and longissimus muscles of either species or the mammary gland of the dairy cows. In pigs (6), the probe hybridized with mRNA from the duodenum, jejunum, and ileum. There was no hybridization with mRNA from the stomach, large intestine, liver, kidney, and semitendinosus and longissimus muscles. Two bands, 3.5 and 2.9 kb were observed with northern blot analysis, indicating two RNA transcripts that may result from alternative mRNA processing. In both Leghorns (15) and broilers (20), the strongest hybridization was found in the duodenum while the jejunum and ileum showed faint bands. The size of mRNA in chickens was 1.9 kb. Other tissues, including the crop, proventriculus, gizzard, ceca, liver, kidney, and muscles showed no hybridization to the probe. In conclusion, mRNA for a peptide transport protein(s) is present in the small intestine of all animals examined and the omasal and ruminal epithelium of sheep and dairy cows. The size of the mRNA varied among species. / Master of Science
6

Ontogenesis of Peptide Transport and Morphological Changes in the Ovine Gastrointestinal Tract

Poole, Catherine Ann 24 October 2001 (has links)
Nutrient absorption is important in all stages of life. As the diet of an animal changes from birth on, morphological and biochemical adaptation can be anticipated in order to accommodate changing demands. The main focus of the present study was to examine the relationship between age and diet on the potential for peptide transport via PepT1 in the gastrointestinal tract of lambs and to relate changes of peptide transport capability to morphological changes. A 2x4 factorial arrangement of treatments was used with 32 crossbred lambs. Four blocks were created based upon gender, birth type (single or twin), birth weight, and birth date. Lambs were randomly allotted at birth to receive or not to receive a creep diet. All lambs were allowed to nurse. Sampling times of 2, 4, 6, or 8 wk were randomly allotted to lambs. Samples for RNA extraction and histological evaluation were taken from the dorsal rumen, ventral rumen, omasum, duodenum, jejunum, and ileum. Villi were about 7% shorter (P < 0.09) in lambs receiving creep feed. Papillary height and width increased linearly (P < 0.001 and P < 0.0001, respectively) with age. Total and keratinized epithelial cells in the stomach decreased (P < 0.03 and P < 0.004, respectively) with age and were fewer (P < 0.0002 and P < 0.0001, respectively) in lambs receiving creep feed. Creep feeding appears to have slightly altered the mucosal structure of the small intestine and it was advantageous in that it stimulated papillary growth and thus predisposed the rumen for the introduction of feed into the diet. A 2.8 kb oPepT1 mRNA was present in all tissues studied by 2 wk, and age did not significantly influence the abundance of oPepT1 mRNA in the small intestine or stomach. In the small intestine, abundance of oPepT1 mRNA was greatest (P < 0.0007) in the jejunum. In the stomach, abundance of oPepT1 mRNA was greatest (P < 0.01) in the dorsal rumen. In the stomach, particularly in the rumen, a greater abundance of oPepT1 mRNA was observed in lambs not receiving the creep diet. It seems likely that a stimulus for development is coming from the non-luminal direction, possibly blood-borne, and may be involved in the ontogenesis of oPepT1. Peptide transport appears to be a physiologically important process in the young lamb and the rumen appears to be involved in the transport of peptides, particularly in nursing lambs. / Master of Science
7

Tissue- and Development-specific Expression of Proton-mediated Peptide Transporters in the Developing Chicken

Zwarycz, Bailey 27 July 2012 (has links)
PepT1, PepT2 and PHT1 are all members of the proton-coupled oligopeptide transporter family, which are important in the transport of amino acids in peptide form. PepT1 acts as a low affinity/high capacity transporter and PepT2 as a high affinity/low capacity transporter for di- and tri-peptides. PHT1 transports di- and tri-peptides as well as histidine. The objective of this study was to profile PepT1, PepT2 and PHT1 mRNA expression in the proventriculus, duodenum, jejunum, ileum, ceca, large intestine, brain, heart, bursa of Fabricius, lung, kidney, and liver in layer chicks on embryonic days 18 and 20 and days 1, 3, 7, 10, and 14 post-hatch. Absolute quantification real-time PCR was used to measure gene expression. PepT1 expression was greatest in the duodenum, jejunum and ileum. Over time, PepT1 expression increased in the duodenum, jejunum, ileum and large intestine and decreased in the ceca. PepT2 expression was greatest in the brain, aiding in neuropeptide homeostasis, and the kidney, aiding in the reabsorption of substrates. Over time, PepT2 expression increased in the bursa of Fabricius and decreased in the proventriculus, duodenum, jejunum and liver. In the small intestine during embryogenesis, PepT2 may function to transport di- and tri-peptides prior to the induction of PepT1. PHT1 expression was expressed in all tissues analyzed. Over time, PHT1 expression increased in the jejunum, large intestine, brain and liver and decreased in the proventriculus. The uptake of peptides in the developing chick is regulated by peptide transporters that are expressed in a tissue- and development-specific manner. / Master of Science
8

Cloning, Expression, and Developmental and Dietary Regulations of a Chicken Intestinal Peptide Transporter and Characterization and Regulation of an Ovine Gastrointestinal Peptide Transporter Expressed in a Mammalian Cell Line

Chen, Hong 05 October 2001 (has links)
To study peptide absorption in chickens, an intestinal peptide transporter cDNA (cPepT1) was isolated from a chicken cDNA library. The cDNA was 2,914-bp and encoded a protein of 714 amino acid residues. Twenty-three di-, tri-, and tetra-peptides were used for functional analysis of cPepT1 in Xenopus oocytes and Chinese hamster ovary (CHO) cells. For most di- and tripeptides tested, the Kt was in the micromolar range, except Lys-Lys and Lys-Trp-Lys. Northern analysis demonstrated that cPepT1 is expressed strongly in the small intestine, and at lower levels in kidney and cecum. These results demonstrated the presence and functions of a peptide transporter in chickens. cPepT1 mRNA abundance was evaluated in response to developmental and dietary regulations. In Experiment 1, eggs at incubation day 18 (E18) and Cobb chicks after hatch (d 0) were sampled before treatments. Three groups of chicks were fed diets containing 12, 18, or 24% crude protein (CP). Feed intake of chicks fed the 18 or 24% CP diets was restricted to that of chicks fed the 12% CP diet. In Experiment 2, a fourth group with free access to the 24% CP diet was added. cPepT1 mRNA abundance was quantified from northern blots. By d 0, there was a 50-fold increase in cPepT1 mRNA abundance compared with E 18. In chicks fed the 12% CP diet, cPepT1 mRNA abundance decreased throughout the 35 d. Chicks fed 18 or 24% CP diets showed an increase in cPepT1 mRNA abundance with time. In chicks with free access to the 24% CP diet, cPepT1 mRNA decreased until d 14 but returned to an intermediate level at d 35. Our results indicate that cPepT1 mRNA is regulated by both dietary protein and developmental stage. To investigate the kinetics of an ovine peptide transporter (oPepT1), CHO cells were transfected with oPepT1 cDNA. Uptake of Gly-Sar by transfected cells was pH-dependent, concentration-dependent, and saturable. Competition studies showed that all di-, tri-, and tetra-peptides inhibited uptake of Gly-Sar. Pretreatment of the cells with staurosporine resulted in an increase in peptide transport. This increase was blocked by pretreatment with PMA. The results indicate that protein kinase plays a role in oPepT1 function. / Ph. D.
9

Étude et modélisation de la cinétique orale de l'amoxicilline chez le porcelet

Bernier, Dave 12 1900 (has links)
Il est rapporté que la biodisponibilité orale de l’amoxicilline chez le porc est environ trois fois moindre que chez l’homme. Pour élucider les raisons de cette différence, la pharmacocinétique artérielle, veineuse porte et urinaire de cet antibiotique a été caractérisée à des doses intragastriques de 4 à 30 mg/kg et différents modèles compartimentaux physiologiques ont été conçus pour l’analyse des données. La biodisponibilité orale de l’amoxicilline est maximale à 4 mg/kg, avec une valeur moyenne de 52%. Les différences porto-systémiques de concentrations plasmatiques d’amoxicilline et la clairance urinaire ont permis de démontrer une augmentation de la clairance hépatique jusqu’à la dose de 30 mg/kg. Un modèle compartimental comprenant deux voies parallèles d’absorption (de type Michaelis- Menten d’accessibilité limitée dans le temps et d’ordre 1), deux compartiments de distribution (central et périphérique) deux voies d’élimination (excrétions urinaire et biliaire) est celui qui prédit le mieux les données observées. Ces résultats mettent en évidence le rôle prépondérant du transporteur saturable PepT1 dans l’absorption orale de l’amoxicilline administrée à faible dose, ainsi que l’importance croissante de l’absorption passive lors d’administration à forte dose. / It was reported that the oral bioavailability of amoxicillin in swine is about three times lower than in human beings. To elucidate the reasons for this difference, arterial, portal venous and urinary pharmacokinetics was documented at intragastric dose amounts ranging between 4 and 30 mg/kg, and several physiologic compartmental models were developed for data analysis. The maximum oral bioavailability of amoxicillin was recorded at 4mg/kg with a mean value of 52%. The portal-systemic plasma concentration differences of amoxicillin and its urinary clearance revealed an increase in hepatic clearance up to the 30 mg/kg dose. A compartmental model with two parallel absorption route (time-constrained Michaelis- Menten and first-order processes), two distribution compartments (central and peripheral) two elimination pathways (urinary and biliary excretions) best fitted the experimental data. These results highlight the paramount role of the PepT1 carriermediated, saturable absorption at low oral amoxicillin doses, as well as the increasing role of passive absorption at high doses.
10

Étude et modélisation de la cinétique orale de l'amoxicilline chez le porcelet

Bernier, Dave 12 1900 (has links)
Il est rapporté que la biodisponibilité orale de l’amoxicilline chez le porc est environ trois fois moindre que chez l’homme. Pour élucider les raisons de cette différence, la pharmacocinétique artérielle, veineuse porte et urinaire de cet antibiotique a été caractérisée à des doses intragastriques de 4 à 30 mg/kg et différents modèles compartimentaux physiologiques ont été conçus pour l’analyse des données. La biodisponibilité orale de l’amoxicilline est maximale à 4 mg/kg, avec une valeur moyenne de 52%. Les différences porto-systémiques de concentrations plasmatiques d’amoxicilline et la clairance urinaire ont permis de démontrer une augmentation de la clairance hépatique jusqu’à la dose de 30 mg/kg. Un modèle compartimental comprenant deux voies parallèles d’absorption (de type Michaelis- Menten d’accessibilité limitée dans le temps et d’ordre 1), deux compartiments de distribution (central et périphérique) deux voies d’élimination (excrétions urinaire et biliaire) est celui qui prédit le mieux les données observées. Ces résultats mettent en évidence le rôle prépondérant du transporteur saturable PepT1 dans l’absorption orale de l’amoxicilline administrée à faible dose, ainsi que l’importance croissante de l’absorption passive lors d’administration à forte dose. / It was reported that the oral bioavailability of amoxicillin in swine is about three times lower than in human beings. To elucidate the reasons for this difference, arterial, portal venous and urinary pharmacokinetics was documented at intragastric dose amounts ranging between 4 and 30 mg/kg, and several physiologic compartmental models were developed for data analysis. The maximum oral bioavailability of amoxicillin was recorded at 4mg/kg with a mean value of 52%. The portal-systemic plasma concentration differences of amoxicillin and its urinary clearance revealed an increase in hepatic clearance up to the 30 mg/kg dose. A compartmental model with two parallel absorption route (time-constrained Michaelis- Menten and first-order processes), two distribution compartments (central and peripheral) two elimination pathways (urinary and biliary excretions) best fitted the experimental data. These results highlight the paramount role of the PepT1 carriermediated, saturable absorption at low oral amoxicillin doses, as well as the increasing role of passive absorption at high doses.

Page generated in 0.0222 seconds