Spelling suggestions: "subject:"phylogeny -- 7molecular aspects"" "subject:"phylogeny -- bimolecular aspects""
1 |
The molecular evolution of the spiral-horned antelope (Mammalia: Tragelaphini)Willows-Munro, Sandi 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: The evolutionary history of the African tribe Tragelaphini (spiral-horn antelope)
is controversial. Past phylogenetic relationships among species were based
on morphology or limited fossil evidence and are in conflict with mitochondrial
DNA sequencing studies that have been conducted more recently. Although
the group is distinguished from other African ungulates by the presence of
spirally-twisted horns, the nine recognized extant species differ considerably
in morphology, feeding habits and their habitat preference. The present study
aims to resolve the phylogenetic uncertainties of the Tragelaphini using
nuclear DNA sequence data derived from four independent DNA loci (MGF,
PRKCl, SPTBN and THY). These data were combined with all previously
published DNA sequences to produce a molecular supermatrix comprising
approximately 6000 characters. Both parsimony and model based
phylogenetic analyses of the nuclear DNA support the associations resulting
from the analysis of mitochondrial genes. These findings suggest that the
morphological characters previously used to delimit species within the group
are subject to convergent evolution. The molecular phylogeny presented
herein suggests that early members of Tragelaphini diverged from the other
bovids during the mid-Miocene approximately 15.7 million years before
present (MYBP). The common nyala (Tragelaphus enqest; and lesser kudu
(Tragelaphus imberbis) representing the most basal species, separated from
the other tragelaphids approximately 7.1 MYBP. This was subsequently
followed by the radiation of those species adapted to a more tropical
environment and they include the mountain nyala (Tragelaphus buxtom),
bongo (Tragelaphus euryceros), sitatunga (Tragelaphus spekel) and
bushbuck (Tragelaphus scriptus), and the arid adapted clade comprising the
giant eland (Taurotragus derbianus), common eland (Taurotragus oryx) and
greater kudu (Tragelaphus strepsiceros). It is thought that this split occurred
at the Miocene-Pliocene boundary approximately 5.4 MYBP. The timing of
evolutionary events within the tribe suggests climatic oscillations and
subsequent biotic shifts as the major driving forces underpinning speciation in
the tribe Tragalaphini. / AFRIKAANSE OPSOMMING; Die evolusionêre geskiedenis van die ras Tragelaphini
(spiraalhoringwildsbokke) is kontroversieël. Vorige filogenetiese
verwantskappe tussen die spesies is gebaseer op morfologie of beperkte
fossiel bewyse. Meer onlangse studies, gebaseer op mitochondriale ONS
nukleotieddata, is in teenstryding met baie van die evolusionêre hypotese
afkomstig van morfologiese studies. Alhoewel die groep van die ander
hoefdiere uitgeken kan word deur die aanwesigheid van spiraalvormige
horings, verskil die nege hedendaagse spesies grootliks ten opsigte van
morfologie, voedingswyse en habitat. Die hoof doelwit van hierdie studie was
om die filogenetise verwantskappe tussen die Tragelaphini spesies te ontleed
deur gebruik te maak van nukluêre ONS nukleotieddata afkomstig van vier
onafhanklike ONS merkers (MGF, PRKCl, SPTBN en THY). Die data verkry
is saamgevoeg by vorige gepubliseerde ONS nukleotidedata om 'n
"supermatris" van sowat 6000 karakters te produseer. Parsimonie en
modelgebaseerde filogenetise analise van die nukluêre ONS nukleotieddata
het ooreengestem met die resultate van vorige mitochondriale studies. Hierdie
bevindings dui daarop dat die morfologiese karakters wat voorheen gebruik is
om die evolusionêre verwantskappe tussen die Tragelaphini spesies te
ontleed onderhewig is aan konvergente evolusie. Die molekulêre filogenie
wat hierin beskryf word stel voor dat die ras Tragelaphini gedurende die mid-
Miocene, omtrent 15.7 miljoen jaar (MJ) gelede van die ander lede van die
subfamilie Bovinae geskei het. Tragelaphus angasi en Tragelaphus imberbis,
die mees basale spesies in die filogenie, het omtrent 7.1 MJ gelede van die
ander lede van die Tragelaphini geskei. Hierdie skeiding is gevolg deur 'n
split tussen die spesies aangepas vir 'n meer tropiese habitat (Tragelaphus
buxtoni, Tragelaphus euryceros, Tragelaphus spekei en Tragelaphus scriptus)
en die spesies aangepas vir 'n droë habitat (Taurotragus derbianus,
Taurotragus oryx en Tragelaphus strepsiceros) Hierdie finale skeiding het
gedurende die Miocene-Pliocene oorgang plaasgevind. Die tydsberekening
van die evolusionêre gebeurtenisse wat binne die Tragelaphini ras
plaasgevind het, gekoppel aan paleoklimaatdata, dui aan dat veranderinge in klimaat en die geassosieerde habitatveranderinge verantwoordelik was vir die
spesiasie patroon wat ons vandag in die Tragelaphini ras waarneem.
|
2 |
Molecular phylogeny of Penaeoidea, Penaeidae and Penaeus sensu lato.January 2009 (has links)
Ma, Ka Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 88-103). / Abstracts in English and Chinese. / ABSTRACT --- p.i / ACKNOWLEDGEMENTS --- p.vii / CONTENTS --- p.ix / LIST OF TABLES --- p.xi / LIST OF FIGURES --- p.xii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Molecular phylogenetics --- p.1 / Chapter 1.2 --- Phylogeny of the penaeoid shrimps --- p.2 / Chapter 1.2.1 --- Interfamilial relationships of Penaeoidea --- p.3 / Chapter 1.2.2 --- Ingergeneric relationships of Penaeidae --- p.8 / Chapter 1.2.3 --- Interspecific relationships of Penaeus s.l --- p.11 / Chapter 1.3 --- Molecular markers for decapods phylogenetics studies --- p.14 / Chapter 1.3.1 --- Mitochondrial markers --- p.14 / Chapter 1.3.2 --- Nuclear markers --- p.16 / Chapter Chapter 2 --- Molecular phylogeny of superfamily Penaeoidea / Chapter 2.1 --- Introduction --- p.19 / Chapter 2.2 --- Materials and methods --- p.21 / Chapter 2.3 --- Results --- p.28 / Chapter 2.4 --- Discussion --- p.40 / Chapter 2.5 --- Conclusions --- p.48 / Chapter Chapter 3 --- Molecular phylogeny of genus Penaeus sensu lato / Chapter 3.1 --- Introduction --- p.50 / Chapter 3.2 --- Materials and methods --- p.50 / Chapter 3.3 --- Results --- p.56 / Chapter 3.4 --- Discussion --- p.74 / Chapter 3.5 --- Conclusions --- p.84 / Chapter Chapter 4 --- General conclusions --- p.85 / References --- p.88
|
3 |
Molecular phylogenetic studies on species of Cryphonectria and related fungiMyburg, Henrietta 06 September 2005 (has links)
Please read the summary in the section 00front of this document. / Thesis (PhD)--University of Pretoria, 2005. / Genetics / Unrestricted
|
4 |
Phylogenetic diversity and cultivation of cyanobacteria from geothermal springs in AsiaJing, Hongmei., 荊紅梅. January 2006 (has links)
published_or_final_version / abstract / Ecology and Biodiversity / Doctoral / Doctor of Philosophy
|
5 |
Phylogenetic analysis and molecular identification of clawed lobsters (Nephropidae) based on mitochondrial DNA.January 2007 (has links)
Ho, Ka Chai. / Thesis submitted in: November 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 127-145). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese) --- p.iii / Acknowledgements --- p.v / Table of Contents --- p.vi / List of Tables --- p.ix / List of Figures --- p.x / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Molecular phylogeny of Metanephrops --- p.1 / Chapter 1.2 --- Identification of Nephropidae using DNA barcodes --- p.3 / Chapter Chapter 2 --- Literature Review --- p.5 / Chapter 2.1 --- Molecular phylogenetic studies of crustaceans --- p.5 / Chapter 2.1.1 --- Molecular phylogeny and reasons of using molecular markers in phylogenetic studies --- p.5 / Chapter 2.1.2 --- Characteristics of animal mitochondrial genome --- p.7 / Chapter 2.1.3 --- Examples of crustacean phylogenetic studies derived from mitochondrial DNA --- p.8 / Chapter 2.2 --- Identification of species based on DNA barcode --- p.17 / Chapter 2.2.1 --- Traditional taxonomy and its current practice --- p.17 / Chapter 2.2.2 --- Needs for DNA barcode --- p.18 / Chapter 2.2.3 --- Molecular identification based on DNA barcodes --- p.21 / Chapter 2.3 --- Taxonomy of Nephropidae --- p.28 / Chapter 2.3.1 --- Classification and phylogenetic relationship of Nephropidae --- p.28 / Chapter 2.3.2 --- Classification and distribution of Metanephrops --- p.31 / Chapter 2.3.3 --- Evolutionary history of Metanephrops --- p.36 / Chapter Chapter 3 --- Molecular Phylogeny of Metanephrops --- p.38 / Chapter 3.1 --- Introduction --- p.38 / Chapter 3.2.1 --- Species studied and sample collection --- p.41 / Chapter 3.2.2 --- DNA extraction --- p.43 / Chapter 3.2.3 --- Amplification of mitochondrial genes --- p.43 / Chapter 3.2.4 --- Nucleotide sequencing --- p.46 / Chapter 3.2.4.1 --- Asymmetric PCR --- p.46 / Chapter 3.2.4.2 --- Purification of asymmetric PCR products --- p.47 / Chapter 3.2.5 --- Sequence alignment --- p.47 / Chapter 3.2.6 --- Phylogenetic analyses --- p.48 / Chapter 3.3 --- Results --- p.50 / Chapter 3.3.1 --- PCR products of 16S rRNA and COI genes --- p.50 / Chapter 3.3.2 --- Nucleotide composition of 16S rRNA gene alignments --- p.52 / Chapter 3.3.3 --- Nucleotide composition of COI gene alignments --- p.54 / Chapter 3.3.4 --- Intraspecific and interspecific genetic variation --- p.56 / Chapter 3.3.5 --- Phylogenetic analysis based on 16S rRNA gene sequences --- p.61 / Chapter 3.3.6 --- Phylogenetic analysis based on COI gene sequences --- p.68 / Chapter 3.3.7 --- Phylogenetic analysis based on combined data set --- p.74 / Chapter 3.4 --- Discussion --- p.80 / Chapter 3.4.1 --- Interspecific genetic divergence --- p.80 / Chapter 3.4.2 --- Monophyly of the four species groups --- p.81 / Chapter 3.4.3 --- Phylogenetic relationship in Metanephrops --- p.84 / Chapter 3.4.4 --- Evolutionary history of Metanephrops --- p.90 / Chapter Chapter 4 --- Molecular Identification of Nephropidae --- p.92 / Chapter 4.1 --- Introduction --- p.92 / Chapter 4.2 --- Materials and methods --- p.93 / Chapter 4.2.1 --- Species studied and sample collection --- p.93 / Chapter 4.2.2 --- DNA extraction --- p.95 / Chapter 4.2.3 --- Amplification of genes --- p.95 / Chapter 4.2.4 --- PCR profiles for mitochondrial genes --- p.97 / Chapter 4.2.5 --- Nucleotide sequencing --- p.97 / Chapter 4.2.6 --- Purification of asymmetric PCR products --- p.97 / Chapter 4.2.7 --- Sequence alignment --- p.97 / Chapter 4.2.8 --- Cluster analysis --- p.97 / Chapter 4.2.9 --- Graphical summary of species similarity --- p.98 / Chapter 4.2.10 --- Testing of molecular identification system in Nephropidae --- p.98 / Chapter 4.3 --- Results --- p.100 / Chapter 4.3.1 --- PCR products and sequence alignments of 16S rRNA and COI genes --- p.100 / Chapter 4.3.2 --- Species identification for clawed lobsters --- p.100 / Chapter 4.3.2.1 --- 16S rRNA profile --- p.100 / Chapter 4.3.2.2 --- COI profile --- p.108 / Chapter 4.4 --- Discussion --- p.116 / General Conclusion --- p.124 / Literature Cited --- p.127 / Appendices --- p.146
|
6 |
A molecular phylogenetic study of the Eugongylus group of skinksSmith, Sarah A. (Sarah Anne) January 2001 (has links) (PDF)
"December 2001" Bibliography: leaves 227-246.
|
7 |
Studies on the centromere-specific histone, CenH3, of Neurospora crassa and related ascomycetesPhatale, Pallavi A. 10 December 2012 (has links)
In eukaryotes, the defined loci on each chromosome, the centromeres, accomplish
the critical task of correct cell division. In some organisms, centromeres are
composed of a euchromatic central core region embedded in a stretch of
heterochromatin and the inheritance and maintenance of centromeres are controlled
by dynamic epigenetic phenomena. Although the size of centromeres differs between
organisms, its organization, and the placement of euchromatic and heterochromatic
regions is conserved from the fission yeast, Schizosaccharomyces pombe, to
humans, Homo sapiens. However, relatively little is known about centromeres in the
filamentous fungi from the Ascomycota, representing the largest group of fungi and
fungal pathogens. Further, studies from humans, flies, yeast and plants have shown
that the inheritance of centromeres is not strictly guided by centromeric DNA content,
which is highly AT-rich, repetitive and constantly evolving. Therefore, it is difficult to
align ans assemble the sequenced contigs of centromeric regions of higher
eukaryotes, including most filamentous fungi. A genetic technique, tetrad (or octad)
analysis has helped to map the centromeres of the filamentous fungus Neurospora
crassa early on. The research presented in this dissertation used N. crassa as a
model to focus on characterizing different features of centromeres with an emphasis
on the centromere-specific histone H3 (CenH3) protein. Data included here represent
the first study on centromere-specific proteins in Neurospora, and demonstrate that
the central core of the centromeres are heterochromatic, showing enrichment of silent
histone marks, which is in contrast to the centromere arrangement in fission yeast.
The CenH3 protein, whose deposition on the genome licenses formation or
maintenance of centromeres, shows highly divergent N-terminal regions and a
conserved histone fold domain (HFD) in all eukaryotes. This bipartite nature of
CenH3 is also observed in the Ascomycota, which provides an opportunity for
functional complementation assays by replacing Neurospora CenH3 (NcCenH3) with
CenH3 genes from other species within the Ascomycota. The results from this
experimental approach provide good measures for (1) determining the specific
regions of CenH3 required for the assembly of centromeres during meiotic and mitotic
cell divisions and (2) analyzing the resistance to changes in the organization of
centromeres in N. crassa.
The genetic analysis showed that the divergent N-terminal region is essential
for the proper assembly of centromeres, and that the conserved carboxy-terminus of
CenH3 is important for the process of meiosis but not mitotic cell division. ChIP-seq
analyses suggest that the observed loss of Podospora anserina CenH3 (PaCenH3-
GFP) from certain N. crassa centromeres does not result in obvious phenotypic
defects, e.g. diminished growth or evidence for aneuploidy. Further, the low
enrichment of PaCenH3-GFP at certain centromeres is possibly predetermined
during meiosis, which results in irreversible and progressive decreases in enrichment.
It remains to be determined if this process is random as far as selection of
centromeres is concerned. Together the results presented here suggest that during
meiosis more stringent structural requirements for centromere assembly apply and
that these are dependent on CenH3, and that depletion of CenH3 from centromeres
does not critically affect mitosis in the asynchronously dividing nuclei of Neurospora hyphae. / Graduation date: 2013
|
8 |
Phylogeny of decapoda (arthropoda: crustacea) using nuclear protein-coding genes. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
Finally, the gene tree of the true crabs, Brachyura, confirms that the basal "Podotremata" is paraphyletic, with the Raninoidea and Cyclodorippoidea more closely related to Eubrachyura than to the other podotremes. Within the monophyletic Eubrachyura, the analysis supports the reciprical monophyly of the two subsections, Heterotremata and Thoracotremata. All of the Old World freshwater crabs cluster together, representing an early diverged lineage in the Heterotremata. / From the inferred phylogeny, we have obtained new insights on the evolution of decapods. First, the spiny lobster from the family Palinuridae is found to be paraphyletic with the polyphyletic Synaxidae nested within it. The Stridentes forms a monophyletic assemblage, indicating that the stridulating sound producing organ evolved only once in the spiny lobsters. Moreover, the spiny lobsters originated in the shallower water rocky reefs of the Southern Hemisphere and then invaded deep sea habitats and diversified. / In sum, I demonstrate the utility of the nuclear protein-coding gene markers in decapod phylogeny and they are informative across a wide range of taxonomic levels. I propose that nuclear protein-coding genes should constitute core markers for future phylogenetic studies of decapods, especially for higher systematics. / Second, we show that hermit crabs have a single origin, but surprisingly, that almost all other major clades and body forms within the Anomura, are derived from within the hermit crabs. The crab-like form and squat lobster form have each evolved at least twice from separate symmetrical hermit crab ancestors. These remarkable cases of multiple parallelism suggest considerable phenotypic flexibility within the hermit crab ground plan, with a general tendency towards carcinization. Rather than having a separate origin from other major clades, hermit crabs have given rise to most other major anomuran body types. / The high diversity of decapods has attracted the interest of carcinologists but there is no consensus on decapod phylogeny in spite of the endeavors using both morphological and molecular approaches. New sources of information are necessary to elucidate the phylogenetic relationships among decapods. In the present study, I attempted to develop and apply the nuclear protein-coding gene markers on decapod phylogeny. Using only two protein-coding genes, we have successfully resolved most of the infraordinal relationships with good statistical support, indicating the superior efficiency of these markers compared to nuclear ribosomal RNA and mitochondrial genes commonly used in phylogenetic reconstruction of decapods. Apparently these two types of markers suffer from the problems of alignment ambiguities and rapid saturation, respectively. Subsequently, I tried to apply the nuclear protein-coding genes in revealing interfamilial and intergeneric evolutionary history in three selected decapod groups, the spiny lobster (family Palinuridae), the infraorder Anomura and the true crabs of the infraorder Brachyura to further evaluate the utility of these markers and reconstruct the evolutionary history the groups. Trees with robust support can be obtained using sequences of three to five genes for the infraorders and families tested including the most speciose Brachyura. The genes are shown to be informative in elucidating interspecific phylogeny as well. / Tsang, Ling Ming. / Adviser: Ka Hou Chu. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 127-153). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
9 |
Molecular phylogenetics and population genetics of pearl oysters in pinctada Röding, 1798. / CUHK electronic theses & dissertations collectionJanuary 2005 (has links)
Pearl oysters of the genus Pinctada include some economically important species. The taxonomy of some of the species is problematic. Phylogenetic relationship of the species in the genus is also poorly studied. In the present study, phylogenetic relationships of P. chemnitzi, P. fucata, P. margaritifera, P. maxima, P. nigra, P. radiata (from China), P. fucata martensii (from Japan), P. albina and P. imbricata (from Australia) were studied with Pteria penguin as an outgroup, and genetic variation of Chinese P. fucata, Japanese P. fucata martensii and Australian P. imbricata populations were investigated (1) to address the taxonomic confusion and phylogeny of pearl oysters, (2) to understand the genetic connections between the Chinese P. fucata, Japanese P. fucata martensii and Australian P. imbricata in west Pacific and (3) to provide information for the genetic improvement program initiated in China. / Since P. fucata, P. fucata martensii and P. imbricata are synonymous, to study the genetic differentiation and genetic variation of such widely distributed populations is helpful in understanding their genetic connections. For this purpose, five populations, three from China (Daya Bay, Sanya Bay and Beibu Bay), one from Japan (Mie Prefecture) and one from Australia (Port Stephens) were studied using AFLP technique. Three primer pairs generated 184 loci among which 91.8-97.3% is polymorphic. An overall genetic among populations and an average of 0.37 within populations (ranging from 0.35 in Japanese population to 0.39 in Beibu Bay population) were observed. Genetic differentiation among the five populations is low but significant as indicated by pairwise GST (0.0079-0.0404). AMOVA further shows that differentiation is significant among the five populations but is not significant at a broader geographical scale, among the three groups of Chinese. Japanese and Australian populations or among the two groups of Australian and north Pacific populations. The low level of genetic differentiation indicated that P. fucata populations in the west Pacific are genetically linked. Among the five populations, the Australian one is more differentiated from the others, based on both pairwise AMOVA and GST analyses, and is genetically isolated by distance as indicated by Mantel test. However, genetic differences among the three Chinese populations are not correlated with the geographic distances, suggesting that Hainan Island and Leizhou Peninsula may act as barriers blocking gene flow. / The above three wild Chinese populations in southern China were compared with the three adjacent cultured populations using AFLP markers. Three pairs of primers generated 184 loci among 179 individuals in populations from Beibu Bay, Daya Bay and Sanya Bay. A high level of genetic diversity, ranging from 0.363 in a wild population in Sanya Bay to 0.388 in a wild population in Beibu Bay, was observed within both wild and cultured populations, indicating an absence of strong bottleneck effects in the history of cultured P. fucata populations. Yet cultured populations in Sanya Bay and Beibu Bay had more fixed loci than the corresponding wild populations. Genetic differentiation in most pairwise comparisons of populations was significant. AMOVA indicated that genetic variation among populations were very low (1.77%) though significant, while more than 98% variation resided among individuals within population. These findings provide no evidence to show that hatchery practice of pearl oyster in China to date has significantly affected the genetic diversity of the cultured populations, and suggest that all populations are competent for selection. Yet the significant genetic differentiation among populations implies that any translocation of individuals for genetic improvement program should be managed with caution for the preservation of genetic diversity in natural populations. / The internal transcribed spacers (ITS1 and ITS2) of nuclear ribosomal DNA were compared among the above nine taxa, based on sequences determined by the present study and those available from Genl3ank. The phylogenetic analysis indicates that the pearl oysters studied constitute three clades: clade I with the small oysters P. fucata, P. fucata martensii and P. imbricata, clade II with P. albina, P. nigra, P. chemnitzi and P. radiata, and clade III and clade III with the big pearl oysters P. margaritifera and P. maxima forming the basal clade. Clade II is made up two subclades: clade IIA consisting of P. albina and P. nigra and clade IIB consisting of P. chemnitzi and P. radiata. The topology of the phylogenetic tree and substitution pattern of ITS sequences suggest that P. margaritifera and P. maxima are primitive species and P. chemnitzi is a recent species. The genetic divergences between clades ranged from 28% to 76.5%, and between subclades, 8.7-10.2%. In clade I, the interspecific genetic divergences ranged from 0.6% to 1.4%, and overlapped with interspecific divergences (0.6-1.1%), indicating that P. fucata, P. fucata martensii and P. imbricata may be conspecific. Based on amplified fragment length polymorphism (AFLP) markers and ITS sequences from more individuals, analyses of the populations of these three taxa also support the conclusion that Chinese P. fucata, Japanese P. fucata martensii and Australian P. imbricata are the same species, with P. fucata being the correct name. The genetic divergence between P. albina and P. nigra was also very low (1.2%), suggesting that they may represent two subspecies that can only be distinguished by shell color. The genetic divergences between P. maxima and P. margaritifera, and between clade IIA and clade IIB ranged from 8.3% to 10.2%, suggesting that they are closely related, respectively. The ITS1 sequence of P. radiata from GenBank is almost identical to that of P. chemnitzi determined in the present study, suggesting that the specimen used for the P. radiata sequence was possibly misidentified. / Yu Dahui. / "August 2005." / Adviser: Ka Hou Chu. / Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6125. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 100-124). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
10 |
Phylogeny of the infraorder Caridea (Crustacea:Decapoda) based on nuclear genes. / 使用細胞核基因之真蝦下目(甲殼亞門 : 十足目)物種分類 / Shi yong xi bao he ji yin zhi zhen xia xia mu (jia qiao ya men:shi zu mu) wu zhong fen leiJanuary 2010 (has links)
Li, Chi Pang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 127-141). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese) --- p.iii / Acknowledgements --- p.v / Contents --- p.vi / List of Tables --- p.ix / List of Figures --- p.x / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter Chapter 2 --- Literature Review --- p.3 / Chapter 2.1 --- Caridean phylogeny --- p.3 / Chapter 2.1.1 --- Informative morphological characters in Caridean shrimps --- p.3 / Chapter 2.1.2 --- Brief history of Caridean classifications --- p.4 / Chapter 2.1.3 --- Natantia/Reptantia scheme vs. Dendrobranchiata/Pleocyemata scheme --- p.8 / Chapter 2.2 --- Phylogney of the family Hippolytidae --- p.10 / Chapter 2.3 --- Molecular approach to phylogeny --- p.11 / Chapter 2.3.1 --- Use of molecular data --- p.11 / Chapter 2.3.2 --- Use of mitochondrial gene markers in crustaceans --- p.12 / Chapter 2.3.3 --- Use of nuclear gene markers in crustaceans --- p.14 / Chapter Chapter 3 --- Phylogeny of the Infraorder Caridea Based on five Nuclear Genes --- p.27 / Chapter 3.1 --- Introduction --- p.27 / Chapter 3.2 --- Materials and Methods --- p.28 / Chapter 3.2.1 --- Sample Collection --- p.28 / Chapter 3.2.2 --- DNA extraction and PCR amplification --- p.28 / Chapter 3.2.3 --- DNA sequencing --- p.29 / Chapter 3.2.4 --- Phylogenetic analysis --- p.30 / Chapter 3.3 --- Results --- p.34 / Chapter 3.3.1 --- Enolase --- p.34 / Chapter 3.3.2 --- NaK --- p.35 / Chapter 3.3.3 --- PEPCK --- p.37 / Chapter 3.3.4 --- Histone --- p.38 / Chapter 3.3.5 --- 18S rRNA --- p.39 / Chapter 3.3.6 --- Combined dataset --- p.41 / Chapter 3.3.7 --- Substitution saturation analysis --- p.43 / Chapter 3.4 --- Discussion --- p.44 / Chapter 3.4.1 --- Evaluation of the five nuclear gene markers --- p.44 / Chapter 3.4.1.1 --- Nuclear protein coding genes --- p.44 / Chapter 3.4.1.2 --- 18S rRNA --- p.81 / Chapter 3.4.2 --- Superfamilies and families --- p.82 / Chapter 3.4.2.1 --- Superfamilies --- p.82 / Chapter 3.4.2.2 --- Families --- p.86 / Chapter 3.4.3 --- Basal groups --- p.86 / Chapter 3.4.4 --- Procarididae --- p.88 / Chapter Chapter 4 --- Phylogeny of the family Hippolytidae --- p.90 / Chapter 4.1 --- Introduction --- p.90 / Chapter 4.2 --- Materials and Methods --- p.91 / Chapter 4.2.1 --- Sample Collection --- p.91 / Chapter 4.2.2 --- DNA extraction and PCR amplification --- p.91 / Chapter 4.2.3 --- DNA sequencing --- p.95 / Chapter 4.2.4 --- Phylogenetic analysis --- p.95 / Chapter 4.3 --- Results --- p.95 / Chapter 4.3.1 --- Enolase --- p.95 / Chapter 4.3.2 --- NaK --- p.98 / Chapter 4.3.3 --- 16S rRNA --- p.99 / Chapter 4.3.4 --- Combined dataset --- p.100 / Chapter 4.4 --- Discussion --- p.118 / Chapter 4.4.1 --- "Resurrection of family Lysmatidae Dana,1852" --- p.118 / Chapter 4.4.2 --- Other hippolytid clades --- p.120 / Chapter 4.4.2.1 --- """Hippolytidae""" --- p.120 / Chapter 4.4.2.2 --- Bythocarididae --- p.121 / Chapter 4.4.3 --- Superfamily Alpheoidea --- p.122 / Chapter Chapter 5 --- General Conclusion --- p.125 / References --- p.127
|
Page generated in 0.0746 seconds