Spelling suggestions: "subject:"physicallybased modeling"" "subject:"biophysicallybased modeling""
1 |
Modeling and animation of orb websMehla, Anubhav 04 April 2005
Modeling of natural phenomena has been of particular interest in the graphics ommunity in recent years. This thesis will explore a method for creating and animating orb webs using a coupled spring-mass system. Using a spring-mass system for creating the orb web is ideal as we can represent each web strand using coupled spring-mass pairs. This allows the orb web simulator to be physically based, i.e., the simulation follows the laws that act on objects in the real world. This in turn simplifies the process of animating the web, as the animation emerges from the simulator without anyone having to set it up explicitly. Since this model is physically based, it would allow for realistic visualization of effects such as observing an orb web under a wind.
In the children's book ``Charlotte's Web', the spider creates orb webs with words inscribed on them. Charlotte's web is used as an inspiration, in this thesis, to create webs which no real world spider could possibly create, while keeping the model physically based. This involves modifying the orb web such that the target text shows up on the orb web while keeping the web looking as natural as possible.
|
2 |
Physically-based Simulation of TornadoesDing, Xiangyang January 2005 (has links)
In this physically-based tornado simulation, the tornado-scale approach techniques are applied to simulate the tornado formation environment. The three-dimensional Navier-Stokes equations for incompressible viscous fluid flows are used to model the tornado dynamics. The boundary conditions applied in this simulation lead to rotating and uplifting flow movement as found in real tornadoes and tornado research literatures. Moreover, a particle system is incorporated with the model equation solutions to model the irregular tornado shapes. Also, together with appropriate boundary conditions, varied particle control schemes produce tornadoes with different shapes. Furthermore, a modified metaball scheme is used to smooth the density distribution. Texture mapping, antialising, animation and volume rendering are applied to produce realistic visual results. The rendering algorithm is implemented in OpenGL.
|
3 |
Physically-based Simulation of TornadoesDing, Xiangyang January 2005 (has links)
In this physically-based tornado simulation, the tornado-scale approach techniques are applied to simulate the tornado formation environment. The three-dimensional Navier-Stokes equations for incompressible viscous fluid flows are used to model the tornado dynamics. The boundary conditions applied in this simulation lead to rotating and uplifting flow movement as found in real tornadoes and tornado research literatures. Moreover, a particle system is incorporated with the model equation solutions to model the irregular tornado shapes. Also, together with appropriate boundary conditions, varied particle control schemes produce tornadoes with different shapes. Furthermore, a modified metaball scheme is used to smooth the density distribution. Texture mapping, antialising, animation and volume rendering are applied to produce realistic visual results. The rendering algorithm is implemented in OpenGL.
|
4 |
Modeling and animation of orb websMehla, Anubhav 04 April 2005 (has links)
Modeling of natural phenomena has been of particular interest in the graphics ommunity in recent years. This thesis will explore a method for creating and animating orb webs using a coupled spring-mass system. Using a spring-mass system for creating the orb web is ideal as we can represent each web strand using coupled spring-mass pairs. This allows the orb web simulator to be physically based, i.e., the simulation follows the laws that act on objects in the real world. This in turn simplifies the process of animating the web, as the animation emerges from the simulator without anyone having to set it up explicitly. Since this model is physically based, it would allow for realistic visualization of effects such as observing an orb web under a wind.
In the children's book ``Charlotte's Web', the spider creates orb webs with words inscribed on them. Charlotte's web is used as an inspiration, in this thesis, to create webs which no real world spider could possibly create, while keeping the model physically based. This involves modifying the orb web such that the target text shows up on the orb web while keeping the web looking as natural as possible.
|
5 |
Particle staining: physically based texture generationMistrot, Jean Michael 30 September 2004 (has links)
Computers are being employed in a variety of ways by a variety of individuals to create imagery. Much work has been done to accurately model natural phenomena in the context of computer graphics as well as model specific artists' tools and techniques.
Focusing on the dynamics of water flow across surfaces, it is the goal of this work to develop a physically inspired texturing tool that allows artists to create interesting staining and wearing effects on surfaces. Weathering or the wearing down of materials by natural forces can create complex and beautiful patterns on a variety of surfaces. In this process lies the very essence of the creative act. To distill the essence of the elements of the water staining process, we employ a computer generated particle system in a phenomenological model. The motion of these particles is controlled by physically based constraints, such as wind, gravity, mass, etc. The way in which each particle interacts with or modifies the look of the surface is further controlled by parameters such as surface roughness, surface color and surface hardness. Each particle can remove or deposit material as it flows across the surface, creating complex patterns.
|
6 |
Physically based mechanical metaphors in architectural space planningArvin, Scott Anthony 30 September 2004 (has links)
Physically based space planning is a means for automating the conceptual design process by applying the physics of motion to space plan elements. This methodology provides for a responsive design process, allowing a designer to easily make decisions whose consequences propagate throughout the design. It combines the speed of automated design methods with the flexibility of manual design methods, while adding a highly interactive quality and a sense of collaboration with the design. The primary assumption is that a digital design tool based on a physics paradigm can facilitate the architectural space planning process. The hypotheses are that Newtonian dynamics can be used 1) to define mechanical metaphors to represent the elements in an architectural space plan, 2) to compute architectural space planning solutions, and 3) to interact with architectural space plans. I show that space plan elements can be represented as physical masses, that design objectives can be represented using mechanical metaphors such as springs, repulsion fields, and screw clamps, that a layout solution can be computed by using these elements in a dynamical simulation, and that the user can interact with that solution by applying forces that are also models of the same mechanical objects. I present a prototype software application that successfully implements this approach. A subjective evaluation of this prototype reveals that it demonstrates a feasible process for producing space plans, and that it can potentially improve the design process because of the quality of the manipulation and the enhanced opportunities for design exploration it provides to the designer. I found that an important characteristic of this approach is that representation, computation, and interaction are all defined using the same paradigm. This contrasts with most approaches to automated space planning, where these three characteristics are usually defined in completely different ways. Also emerging from this work is a new cognitive theory of design titled 'dynamical design imagery,' which proposes that the elements in a designer's mental imagery during the act of design are dynamic in nature and act as a dynamical system, rather than as static images that are modified in a piecewise algorithmic manner.
|
7 |
Resolution independent curved seams in clothing animation using a regular particle gridFoshee, Jacob Wesley 15 November 2004 (has links)
We present a method for representing seams in clothing animation, and its application
in simulation level of detail. Specifically we consider cloth represented as a regular
grid of particles connected by spring-dampers, and a seam specified by a closed set
of parametric trim curves in the cloth domain.
Conventional cloth animation requires the tessellation of seams so that they are
handled uniformly by the dynamics process. Our goal is a seam definition which
does not constrain the attached clothing panels to be of the same resolution, or even
constant resolution, while not being a hindrance to the dynamics process. We also
apply our seams to cloth defined on a regular grid, as opposed to the irregular meshes
commonly used with seams.
The determination of particles interior to the cloth panel can be done using wellknown
graphics operations such as scan-conversion. Due to the particle-based nature
of the simulation, the dynamics approach combines easily with existing implicit and
explicit methods.
Finally, because the seams are resolution independent, the particle density per
clothing panel can be adjusted as desired. This gives rise to a simple application
of the given seams approach illustrating how it may be used for simulation level of
detail.
|
8 |
Physically based mechanical metaphors in architectural space planningArvin, Scott Anthony 30 September 2004 (has links)
Physically based space planning is a means for automating the conceptual design process by applying the physics of motion to space plan elements. This methodology provides for a responsive design process, allowing a designer to easily make decisions whose consequences propagate throughout the design. It combines the speed of automated design methods with the flexibility of manual design methods, while adding a highly interactive quality and a sense of collaboration with the design. The primary assumption is that a digital design tool based on a physics paradigm can facilitate the architectural space planning process. The hypotheses are that Newtonian dynamics can be used 1) to define mechanical metaphors to represent the elements in an architectural space plan, 2) to compute architectural space planning solutions, and 3) to interact with architectural space plans. I show that space plan elements can be represented as physical masses, that design objectives can be represented using mechanical metaphors such as springs, repulsion fields, and screw clamps, that a layout solution can be computed by using these elements in a dynamical simulation, and that the user can interact with that solution by applying forces that are also models of the same mechanical objects. I present a prototype software application that successfully implements this approach. A subjective evaluation of this prototype reveals that it demonstrates a feasible process for producing space plans, and that it can potentially improve the design process because of the quality of the manipulation and the enhanced opportunities for design exploration it provides to the designer. I found that an important characteristic of this approach is that representation, computation, and interaction are all defined using the same paradigm. This contrasts with most approaches to automated space planning, where these three characteristics are usually defined in completely different ways. Also emerging from this work is a new cognitive theory of design titled 'dynamical design imagery,' which proposes that the elements in a designer's mental imagery during the act of design are dynamic in nature and act as a dynamical system, rather than as static images that are modified in a piecewise algorithmic manner.
|
9 |
Espaces virtuels pour l’éducation et l’illustration scientifiques : contribution à l’appréhension de la Théorie de la Relativité Restreinte par la réalité virtuelle / Virtual spaces for scientific exploration and education : contribution to the apprehension of the Theory of Special Relativity through virtual realityDoat, Tony 20 September 2012 (has links)
La Théorie de la Relativité (TRR), est une théorie particulièrement contre-intuitive dont les implications sont inaccessibles à l'expérience sensible humaine ; ce qui pose un certain nombre de difficultés de compréhension aux étudiants. Cependant, la Réalité Virtuelle (RV) offre une approche intéressante en permettant à un utilisateur d'être immergé et d'interagir dans un monde virtuel où la vitesse de la lumière est ramenée à 1 m/s. Les phénomènes relativistes deviennent ainsi directement accessibles par ses sens. Cette caractéristique, point départ de nos travaux, permet alors d’appréhender les phénomènes relativistes par une expérience « par la pratique ». L'enjeu de notre travail porte plus précisément sur la définition de moyens et de méthodes intégrés dans une plate-forme immersive permettant d'appréhender les phénomènes relativistes. Dans ce contexte, nous proposons, tout d’abord, des méthodes novatrices pour simuler les phénomènes relativistes sur un nombre quelconque d'objets en mouvement arbitraire et tenant compte de la dynamique relativiste des objets dans la scène, notamment durant leurs interactions. Nous nous focalisons sur les effets qui déforment les objets vus par l'observateur, à savoir le délai de propagation des photons, la relativité des longueurs et l'effet d'aberration. Nous définissons ensuite des méthodes pour intégrer une simulation relativiste dans un environnement immersif basé intrinsèquement sur un monde newtonien. Nous proposons également une plate-forme expérimentale dans laquelle sont intégrées des méthodes d'interaction utilisées pour mettre en scène un « jeu sérieux », ici un billard relativiste. Enfin, nous démontrons la portée de notre outil expérimental par deux voies : l'une concerne l'utilisation de l'application dans des évaluations de didactique et l'autre concerne un exemple d'extension de l'outil pour mettre en lumière un autre aspect de la Physique relativiste : la relation entre vitesse et énergie. / The Theory of Special Relativity (TSR) is a particularly counterintuitive theory. Its implications are, by nature, out of reach by human experience. Therefore we cannot perceive its effects directly, thus raising problems of comprehension for the students confronted to it. However, Virtual Reality (VR) enables us to overcome this limitation by immersing a user into a world where the velocity of light is reduced to 1 m/s. As a result, the relativistic phenomena become directly perceivable through our senses. This possibility, which is the cornerstone of our work, brings a unique way to apprehend the relativistic phenomenon trough a "hands-on" experiment.In this context, we propose, first, innovative methods to include relativistic effects in simulation containing any number of objects moving in an arbitrary direction and velocity and taking into account the relativistic dynamics of the objects, including object-to-object interaction. We focused on the relativistic phenomenon involved in the deformation of objects: the delay of propagation of the photons from the light source to the observer, as well as the relativity of length and the aberration of light. We describe, second, methods to integrate the simulation techniques, previously introduced, into an immersive environment intrinsically based on Newtonian physics. We also provide interaction methods and a concrete application in a serious game framework: a relativistic carom billiard. Finally, we demonstrate the possibilities of our platform are demonstrated in two ways: one tackles usage in the context of learning evaluation and the other is an extension of the tool to access new pieces of information relevant to TSR, such as the force profile used to launch an object with a relativistic velocity.
|
10 |
Gravure dynamique : visualisation par modèle physique pour l'animation et les réalités virtuelles / Dynamic Engraving : Physically-based visualization for animation and virtual realitiesSillam, Kevin 14 December 2011 (has links)
Le modèle physique masses interactions est puissant pour la simulation de comportements dynamiques très divers et pour la production de mouvements expressifs, riches et d'une grande complexité. En revanche, une difficulté inhérente à ce type de formalisme pour la production d'images animées réside dans le fait que les masses ponctuelles n'ont pas de spatialité ; il est donc difficile de produire des séquences d'images animées par le rendu direct des masses ponctuelles décrivant le mouvement. D'une manière générale, il est donc nécessaire de développer des méthodes qui étendent la spatialité de ces masses ponctuelles pour compléter la chaîne de production d'images animées par modèle physique particulaire. Une méthode, proposée par le laboratoire ICA, répond à ce type de problématique en permettant d'étendre la spatialité des masses ponctuelles en considérant l'interaction physique entre ces masses et un milieu. Il s'agit d'une métaphore du procédé physique de la gravure. Celle ci a permis de produire des images animées convaincantes de divers phénomènes visuels. Nous présentons dans ce document un élargissement de cette méthode notamment au cas 3D, ainsi qu'à de nouveaux comportements. De plus, l'algorithme de cette méthode a été parallélisé, ce qui nous a permis d'obtenir des simulations calculées en temps réel en utilisant la puissance actuelle des cartes graphiques. Afin de maitriser au mieux les possibilités de la méthode, nous avons développé un logiciel comprenant une interface graphique manipulable et interactive permettant de modéliser avec aisance différents comportements. Cette méthode a été intégrée dans des installations interactives artistiques multi-sensorielles fournissant un comportement dynamique riche et configurable, tout en permettant une interaction en temps réel avec le spectateur. / Mass – Interaction physical modeling is a powerful formalism for the simulation of various dynamic behaviors and for the production of expressive, rich and complex motions. However, there is an inherent matter of this type of formalism for animation production, which resides on the fact that masses have no spatiality. Thus, it is difficult to produce animation sequences directly from rendering mass point describing the movement. It is then necessary to develop methods that extend the masses spatiality in order to complete the animation process. ICA Laboratory addressed the problem with a method based on the physical simulation of interaction between these masses and a dynamic milieu, according to the metaphor of engraving. We present in this document an extension of this method notably towards 3D and other effects. Besides, the parallel implementation on Graphic Cards (GPU) allowed obtaining real time simulation. An interactive graphical interface was also developed to facilitate the creation of different models. We used this process in multi-sensory interactive art installations for its rich and dynamic ability to create shape from motion and interact in real time with spectators.
|
Page generated in 0.1057 seconds