• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 371
  • 345
  • 50
  • 46
  • 46
  • 46
  • 46
  • 46
  • 46
  • 17
  • 2
  • 1
  • Tagged with
  • 996
  • 996
  • 359
  • 345
  • 178
  • 140
  • 137
  • 120
  • 110
  • 80
  • 80
  • 79
  • 74
  • 60
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Precision experiments in neutron beta decay

January 2008 (has links)
A free neutron will disintegrate into a proton after about fourteen and a half minutes, emitting an electron and an antineutrino. The Standard Electroweak Model epitomizes the process with a decay probability distribution function (PDF) derived by Jackson, Trieman, and Wyld. This function depends on the momenta of the daughter particles and the spin of the neutron. Each correlation between these vector quantities is characterized by a correlation coefficient. The work of this dissertation focused on two experiments investigating these coefficients, and thus, the properties of the beta-decay process for polarized neutrons The first of these, called emiT, was an experiment to measure the coefficient (D) that characterizes the triple product between these observables; a product which changes sign under time reversal. The experiment has a four-fold symmetric design to improve statistics over previous measurements of D while mitigating systematics, and has been completed with a result pending. My contribution, in addition to some assembly of the apparatus, consisted of performing an analysis of the data and investigating overall systematics. These systematic issues ultimately precluded the use of the analysis method I employed, however, I was able to give an account of the size of the systematic effects, and other methods have been developed to analyze the data while evading these effects The other experiment, aCORN, will measure the a coefficient, the correlation between the electron and antineutrino momenta. The apparatus for this experiment is now being constructed. The a coefficient is one of the least-precisely known of the correlation coefficients. There have been only three previous attempts to measure it, and all of those experiments relied on the same method, which possesses a systematic limitation in the precision at which a can be measured that is not easy to overcome. aCORN relies on a completely new idea, not limited by the same systematics, which promises to improve this precision significantly. My charge for aCORN was to assemble and test the backscatter-suppressing electron spectrometer to be used, and currently it is the only component which is sufficiently completed and ready for the experimental run / acase@tulane.edu
492

Precision measurements of neutron-matter interactions using neutron interferometry

January 2009 (has links)
This thesis focuses on two experiments done at the National Institute of Standards and Technology (NIST) to measure neutron scattering lengths. Both experiments used a neutron interferometer; a device that has been used to determine the scattering lengths of a variety of isotopes to better than one percent relative uncertainty. Neutron scattering lengths are important parameters in understanding both nucleon structure and nucleon-nucleon interactions from the point of view of low-energy quantum chromodynamics (QCD) The first experiment is an attempt to measure the neutron-electron scattering length bne. The neutron-electron scattering length is important because of its relationship to the internal charge distribution of the neutron. Combining the latest bne results gives the current excepted value of bne = (-1.345 +/- 0.025) 10-3 fm. However, there is a non-statistical disagreement between the individual measurements. Here we use a neutron interferometer to measure the large-dynamical phase shift, part of which is due to bne, caused when the neutron and crystal satisfy Bragg's law. This is accomplished by rotating a perfect silicon crystal in steps as small as 10-8 rad through the Bragg condition. Because of unforeseen signal losses, this experiment has not yet produced a final result but lessons learned in this work will assist future bne measurements The second experiment is a measurement of the spin-incoherent neutron scattering length of 3He b'i. In the study of few-body nuclear physics, two and three nucleon potentials are used to describe complex nucleon interactions which cannot be directly calculated using QCD. Neutron scattering lengths of light isotopes provide crucial tests of these nucleon-nucleon potentials. The neutron interferometry and optics facility at NIST had been used previously to determine the spin-coherent scattering lengths for n-1H, n-2H, and n-3He to better than 0.2% relative uncertainty. We report a result of b' i = (-2.512 +/- 0.018) fm using a polarized 3He target and polarized neutron beam. This result combined with spin-coherent data is in good agreement with certain theoretical models describing three nucleon interactions / acase@tulane.edu
493

Electromagnetic radiation from matter under extreme conditions

Turbide, Simon. January 2006 (has links)
No description available.
494

Étude de la production de saveurs lourdes et de la multiplicité de particules chargées dans le cadre du formalisme du Color Glass Condensate pour les collisions p+p et p+Pb dans l'expérience ALICE au LHC

Malek, M. 20 July 2009 (has links) (PDF)
La matière nucléaire classique se caractérise par des densités d'énergie de l'ordre de " = 0,17 GeV/fm3. Pour des conditions critiques en densité d'énergie 5 -10 " ou en température de 150 - 200 MeV, la chromodynamique quantique (QCD) sur réseau prédit une transition de phase entre la matière nucléaire classique et un nouvel état de la matière : le Plasma de Quarks et de Gluons (PQG) dans lequel les quarks et les gluons seraient déconfinés. Les collisions d'ions lourds ultra-relativistes permettent de créer des conditions thermodynamiques, i.e. un milieu dense et chaud, très favorable à la formation du PQG. Le LHC offre la possibilité de faire des collisions proton-proton et des collisions d'ions lourds à des énergies de plusieurs TeV par nucléon. Les énergies disponibles permettront de tester expérimentalement différents formalismes théoriques de la QCD développés afin de décrire les collisions d'ions lourds dans la limite des hautes énergies. La compréhension des conditions initiales de la collision est obligatoire afin de comprendre l'évolution du système vers un état de PQG. L'un des formalismes les plus discutés depuis ces dernières années qui décrit ces conditions initiales est le Color Glass Condensate (CGC). Il prédit la saturation de la densité partonique au sein des noyaux dans le domaine des petites valeurs de Bjorken-x correspondant à de grandes pseudorapidités. ALICE est l'une des expériences du LHC consacrée à l'étude des collisions d'ions lourds ultra-relativistes et en particulier à l'analyse des propriétés du PQG. Une des signatures possibles de la création du PQG est la suppression des taux de production des quarkonia (J/ , ) par écrantage de couleur dans un milieu déconfiné. Le spectromètre à muons de l'expérience ALICE permettra de mesurer les taux de production des quarkonia via leur canal de désintégration muonique dans un domaine de pseudorapidité -4 < < -2,5. Les effets de saturation, plus importants à grande pseudorapidité, font du spectromètre à muons d'ALICE un détecteur tout particulièrement approprié pour cette étude. La première partie de ce travail porte sur l'installation et la préparation du spectromètre à muons d'ALICE en vue des premières prises des données. Les tests de l'électronique frontale et des chambres du système de trajectographie du spectromètre à muons conduisent à la conclusion que la station 1 du spectromètre à muons est prête à enregistrer les premières données physiques. La seconde partie présente l'étude du CGC par deux voies expérimentales : la production des saveurs lourdes (charme et beauté) et la multiplicité des particules chargées. Nous montrons que l'état final de la collision est affecté par l'existence du CGC dans l'état initial. Ce travail mène à la conclusion que le LHC permettra une étude de cette nouvelle physique jamais explorée auparavant.
495

Etude du bruit de fond provenant du Bismuth 214 et analyse du signal de double désintégration bêta avec une méthode de maximum de vraisemblance dans l'expérience NEMO-3

Simard, L. 19 October 2009 (has links) (PDF)
Les résultats récents des expériences d'oscillations ont montré que le neutrino est une particule massive; jusqu'à présent la valeur absolue de sa masse reste inconnue, même si les expériences de cosmologie ou de mesure directe donnent des contraintes. D'autre part, comme le neutrino est le seul fermion qui n'est pas chargé électriquement, il peut être identique à son antiparticule, c'est-à-dire être une particule de Majorana. La recherche de la double désintégration bêta $\mathrm{\beta \beta 0 \nu}$ est actuellement la seule technique expérimentale susceptible de mettre en évidence le neutrino de Majorana. Le détecteur NEMO-3, qui recherche la double désintégration bêta du Molybdène 100 et du Sélénium 82, prend des données au Laboratoire Souterrain de Modane depuis février 2003. La première phase de prise de données a permis de mettre en évidence une contamination de la chambre à fils trop élevée en Bismuth 214. Afin d'éviter qu'une faible fraction du radon de l'air du laboratoire ne diffuse dans le détecteur, une tente a été installée autour de celui-ci et une installation de déradonisation de l'air permet d'appauvrir en radon l'air qui entre dans la tente. Le détecteur NEMO-3 peut mesurer pour chaque prise de données sa contamination interne en Bismuth 214; des modèles permettent de décrire comment le radon peut diffuser dans le détecteur, ou comment l'activité en radon de l' air du laboratoire peut varier lors d'une coupure de ventilation. Après installation de la tente et de l'installation de déradonisation de l'air, plusieurs hypothèses sont proposées pour expliquer la contamination résiduelle, sachant que compte-tenu de la longue demi-vie du Radon 222, l'analyse des désintégrations du Bismuth 214 ne permet pas de remonter avec certitude à l'origine du matériau où le radon émane. Enfin, les désintégrations du Bismuth 214 rendent possible un test global, sur lénsemble du détecteur et pour une prise de donnée assez longue, de l'étalonnage en énergie. La recherche de la double désintégration bêta est basée sur une méthode de maximum de vraisemblance, qui utilise l'ensemble des informations mesurées sur les événements à deux électrons par NEMO-3 : non seulement la somme des énergies des électrons, mais également leurs énergies individuelles et l'angle d'émission entre eux. Les distributions sont ajustées sur des simulations pour les signaux et les bruits de fonds; ensuite les contributions des bruits de fond autres que la $\mathrm{\beta \beta 2 \nu}$ sont fixées, grâce à des canaux dédiés de plus haute statistique. Après 2,6 ans de prises de données pour la période à teneur en radon réduite, aucun signal n'a été observé et les contraintes sur les demi-vies de $\mathrm{\beta \beta 0 \nu}$ sont : $$\mathrm{T_{1/2}^{\beta \beta 0 \nu,~} > 8,3~10^{23}~ann\acute{e}es (90\% CL)~^{100}Mo}$$ $$\mathrm{T_{1/2}^{\beta \beta 0 \nu,~} > 4,9~10^{23}~ann\acute{e}es (90\%CL)~^{82}Se}$$ L'utilisation de l'information sur les énergies individuelles et sur l'angle d'émission entre les électrons permet d'améliorer la sensibilité au processus de $\mathrm{\beta \beta 0 \nu}$ généré par les courants droits : $$\mathrm{T_{1/2}^{\beta \beta 0 \nu,~V+A} > 3,5 ~10^{23} ~years~ (90\% CL)~^{100}Mo}$$ $$\mathrm{T_{1/2}^{\beta \beta 0 \nu,~V+A} > 2,7~ 10^{23} ~years~ (90\% CL)~^{82}Se}$$
496

Fonctionnelles d'energie non-empiriques pour la structure nucleaire

Rotival, Vincent 29 September 2008 (has links) (PDF)
La methode de la fonctionnelle de la densite d'energie (EDF) est un outil de choix pour l'etude de la structure nucleaire a basse energie, car elle permet des calculs de noyaux finis aussi bien pour des systemes stables connus experimentalement dont les proprietes sont reproduites avec une bonne precision, que pour des noyaux qui ne peuvent encore etre produits mais sont predits theoriquement. Dans la premiere partie de cette these, une nouvelle methode quantitative est introduite pour caracteriser l'existence et les proprietes des halos dans les noyaux moyens et lourds, ainsi que pour etudier l'impact des correlations d'appariement ou du choix de la fonctionnelle d'energie sur leur formation. Il apparait que la solidite de ces resultats est limitee par le faible pouvoir predictif des fonctionnelles utilisees jusqu'a present qui sont ajustees sur des donnees experimentales. Dans la seconde partie de ce memoire, nous entreprenons la construction de fonctionnelles non-empiriques qui reposent sur un nouveau paradigme pour les forces nucleon-nucleon dans le vide, a savoir les interactions low-momentum engendrees par l'application des methodes du groupe de renormalisation. Ces potentiels a coeur mou sont utilises comme point de depart d'une strategie a long terme faisant le lien entre les techniques modernes de resolution du probleme a N corps et les methodes EDF. Nous donnons ainsi des perspectives pour construire differentes realisations d'un modele non-empirique d'interaction incluant les effets de milieu a differents niveaux d'approximation et pouvant etre traite dans les codes dedies a la structure nucleaire. Dans ce memoire, la premiere etape de ce travail est initiee par l'ajustement d'une representation operatorielle des forces low-momentum dans le vide realise au moyen d'un algorithme parallele d'intelligence artificielle. Les premiers resultats mettent en valeur la possibilite d'incorporer la physique necessaire a la structure de basse energie dans ce vertex gaussien.
497

La spectroscopie $gamma$ : des faisceaux stables aux faisceaux radioactifs

Stézowski, O. 18 June 2008 (has links) (PDF)
La spectroscopie gamma est une sonde très précise de la structure nucléaire interne des noyaux. Elle permet de fixer les niveaux d'énergie autorisés par la mécanique quantique, de déterminer les nombres quantiques caractéristiques (spin et parité) ainsi que la durée de vie de certains états. Créés avec une énergie d'excitation élevée et à haut moment angulaire par réaction de fusion-évaporation, quel que soit le type de faisceau, leur spectre de désexcitation peut s'avérer très complexe à établir expérimentalement mais aussi à interpréter théoriquement. L'étude de séquences de désexcitation caractéristiques,<br>notamment par une certaine régularité, est ainsi naturellement privilégiée.Le chapitre qui suit cette introduction s'arrête sur ces structures particulières associées à différents modes de rotation du noyau. Plusieurs résultats seront ainsi exposés issus d'expériences en partie ou fortement réalisées, analysées et interprétées dans le groupe de Lyon. La rotation collective des noyaux déformés, voire superdéformés, sera illustrée par la mise en évidence de bande de rotation respectivement dans les régions de masse A $simeq$ 130 et A $simeq$ 190. La région de masse A $simeq$ 190 est doublement à l'honneur, pour détailler un autre mode singulier de rotation dit “magnétique”. Enfin quelques mots évoqueront la recherche de formes tétraédrales, un projet initié et piloté par un groupe Strasbourgeois.
498

Theories des champs topologiques et mecanique quantique en espace non-commutatif

Lefrançois, M. 05 December 2005 (has links) (PDF)
Le Modèle Standard de la physique des particules décrit les interactions entre les constituants élémentaires de la matière. Cependant, il ne parvient pas à concilier théorie quantique des champs et relativité générale. Cette thèse se focalise sur deux approches au-delà du Modèle Standard, a priori différentes mais non nécessairement<br />incompatibles entre elles : les théories des champs topologiques et la mécanique quantique en espace non-commutatif.<br />Les théories topologiques ont été introduites par Witten il y a une vingtaine d'années et possèdent un lien très étroit avec les mathématiques : leurs observables<br />sont des invariants topologiques de la variété d'espace-temps étudiée. Dans ce mémoire, nous nous intéressons en premier lieu à une théorie de Yang-Mills topologique. Ce modèle-jouet est ici abordé dans<br />un formalisme de superespace et nous dégageons une méthode systématique de détermination de ses observables. L'intérêt est double : d'une part,<br />retrouver les résultats obtenus précédemment dans une jauge particulière (de Wess et Zumino) et d'autre part, calculer les observables dans une superjauge quelconque. Notre approche a ainsi permis de vérifier que les observables découvertes jusque là en théorie de<br />Yang-Mills topologique étaient les seules possibles. Le formalisme développé peut ensuite être appliqué à des<br />modèles plus complexes; dans cette optique, nous détaillons ici le cas de la gravité topologique.<br />La mécanique quantique en espace non-commutatif propose une extension de l'algèbre de Heisenberg<br />de la mécanique quantique ordinaire. La différence tient au fait que les différentes composantes des opérateurs position ou moment ne commutent plus entre elles. Par conséquent, il est nécessaire de renoncer à la notion de point en introduisant une «longueur fondamentale». Nous nous intéressons dans la deuxième partie de ce<br />manuscrit à la description des différentes algèbres de<br />commutateurs rencontrées. Des applications à des systèmes quantiques en dimension deux (système de Landau, oscillateur harmonique,...) ainsi qu'une généralisation au cas de systèmes supersymétriques sont présentées.
499

Production de dimuons en reactions p-p et Pb-Pb avec ALICE: le détecteur V0 et les résonances de basse masse

Rapp, Benjamin 18 June 2004 (has links) (PDF)
Les collisions d'ions lourds ultra relativistes permettent, grâce à la haute densité d'énergie atteinte, de produire un nouvel état de la matière où les quarks ne sont plus confinés à l'intérieur des nucléons. Cet état, appelé Plasma de Quarks et de Gluons sera étudié par l'expérience ALICE située auprès du collisionneur LHC du CERN. Dans cette thèse est décrit le détecteur V0, hodoscopes de scintillateurs situés de part et d'autre du point de collision des faisceaux au centre de l'expérience ALICE. Il joue un rôle essentiel dans ALICE. Il fournit le déclenchement de niveau 0 de l'expérience, filtre une grande partie du bruit de fond instrumental et permet de mesurer la luminosité en collisions proton-proton. Le développement de ce détecteur ainsi que ses performances sont détaillés. La physique des dimuons est aussi abordée dans le cas plus particulier de l'étude des résonances de basse masse. La région de masse invariante inférieure à 3 GeV/c$^2$ contient une importante information sur le milieu chaud et/ou dense créé lors des collisions d'ions lourds. La modification des propriétés des résonances $\rho^0$, $\omega$ et $\phi^0$ est un signal potentiel de la restauration de la symétrie chirale. La possibilité d'observer ces résonances dans leur voie de désintégration en paires de muons est évaluée en collisions p-p et Pb-Pb avec le spectromètre dimuon d'ALICE.
500

Etude des effets d'irradiation sur le Phosphate Diphosphate de thorium (beta-PDT) ; conséquences sur la durabilité chimique.

Tamain, Claire 14 December 2005 (has links) (PDF)
Le Phosphate Diphosphate de Thorium (β-PDT) est considéré comme une matrice<br />céramique potentielle en vue de l'immobilisation des actinides en formation géologique<br />profonde. Il s'est avéré donc impératif d'étudier les effets de l'irradiation sur la structure de<br />cette céramique et les conséquences sur sa durabilité chimique.<br />Des échantillons de β-PDT et des solutions solides associées de β-PDTU ont été irradiés<br />puis altérés en solution aqueuse. Selon la valeur du TEL électronique, le β-PDT peut<br />s'amorphiser totalement ou partiellement. Par ailleurs, la capacité de recristallisation du<br />matériau amorphe par recuit thermique a été démontrée. Les tests de lixiviation menés sur ces<br />échantillons irradiés ont montré une influence significative de la fraction amorphe sur la<br />vitesse de dissolution normalisée qui augmente d'environ un facteur 10 entre le matériau non<br />irradié et le matériau amorphe. Corrélativement, la fraction amorphe modifie le temps requis<br />pour atteindre les conditions de saturation associées aux équilibres thermodynamiques. En<br />revanche, elle ne présente aucune influence ni sur d'autres paramètres cinétiques, tels que<br />l'énergie d'activation du processus de dissolution ou l'ordre partiel par rapport aux protons, ni<br />la nature de la phase néoformée identifiée comme le Phosphate HydrogénoPhosphate de<br />Thorium Hydraté (PHPTH).<br />Des échantillons de β-PDTU ont aussi été irradiés sous rayonnements γ et α pendant les<br />tests de lixiviation afin d'étudier les effets de la radiolyse du milieu lixiviant sur la vitesse de<br />dissolution du matériau. Il est apparu que les espèces radiolytiques intervenant dans le<br />mécanisme de dissolution étaient peu stables, disparaissant rapidement dès la fin de<br />l'irradiation. Leur caractère fortement oxydant vis-à-vis de l'uranium tétravalent permet d'expliquer la différence de comportement entre les cations métalliques (U et Th)

Page generated in 0.0694 seconds