• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 26
  • 23
  • 23
  • 23
  • 23
  • 23
  • 22
  • 2
  • 1
  • Tagged with
  • 177
  • 177
  • 174
  • 73
  • 55
  • 54
  • 35
  • 35
  • 22
  • 20
  • 16
  • 11
  • 11
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Semiconductor modification and characterization with a scanning probe microscope

Ruskell, Todd Gary, 1969- January 1996 (has links)
The capabilities of a commercially available atomic force microscope system have been expanded to include sub-picoampere measurements of local surface conductivity. This multiple mode analysis tool is capable of providing local I/V curves, current maps at a constant voltage, or voltage maps at a constant current, simultaneously with the usual topographic data obtained for a given sample. The resulting electrical maps and local I/V curves from several samples are presented, and their interpretation discussed. Additionally, this system has been used for field-induced silicon oxide growth and, for the first time, silicon nitride growth. The mechanism for both SiO2 and Si3 growth is explored, revealing the possibility of precisely controlling the uniformity of the lithographed features.
172

Artificially Structured Boundary for Control and Confinement of Beams and Plasmas

Hedlof, Ryan 05 1900 (has links)
An artificially structured boundary (ASB) produces a short-range, static electromagnetic field that can reflect charged particles. In the work presented, an ASB is considered to consist of a spatially periodic arrangement of electrostatically plugged magnetic cusps. When used to create an enclosed volume, an ASB may confine a non-neutral plasma that is effectively free of applied electromagnetic fields, provided the spatial period of the ASB-applied field is much smaller than any one dimension of the confinement volume. As envisioned, a non-neutral positron plasma could be confined by an ASB along its edge, and the space-charge of the positron plasma would serve to confine an antiproton plasma. If the conditions of the two-species plasma are suitable, production of antihydrogen via three-body recombination for antimatter gravity studies may be possible. A classical trajectory Monte Carlo (CTMC) simulation suite has been developed in C++ to efficiently simulate charged particle interactions with user defined electromagnetic fields. The code has been used to explore several ASB configurations, and a concept for a cylindrically symmetric ASB trap that employs a picket-fence magnetic field has been developed. Particle-in-cell (PIC) modeling has been utilized to investigate the confinement of non-neutral and partially neutralized positron plasmas in the trap.
173

Contribution à la modélisation du magnétisme statique et dynamique pour le génie électrique / Contribution of static and dynamic magnetism modelings for electrical engineering

Marion, Romain 13 December 2010 (has links)
De nos jours, la modélisation numérique constitue un outil indispensable pour le prototypage de convertisseurs électromagnétiques. Les matériaux magnétiques jouent un rôle essentiel dans la conversion de l’énergie, il est donc nécessaire de maîtriser leur comportement et leur représentation. L’objectif de ce travail s’inscrit dans ce cadre et s’attache à élaborer des lois réalistes de comportement de matériaux afin de les inclure dans des simulateurs de circuits. Concernant le comportement statique, le modèle de Jiles-Atherton a été implémenté puis adapté, simplifié et modifié afin d’en améliorer la précision et l’implémentation. La modélisation dynamique du matériau a été effectuée grâce au modèle DWM élaboré au laboratoire Ampère. Ce modèle intègre les effets dynamiques excédentaires grâce à une loi « dynamique de matériau » implémentée au sein de l’équation de diffusion magnétique. Ce modèle a été ensuite homogénéisé afin d’en améliorer son implémentation future dans un simulateur de circuit. Chacun des différents modèles a été testé et validé sur plusieurs échantillons. / Nowadays, numerical modeling is an indispensable tool for the prototyping of electromagnetic converters. Magnetic materials play an essential role into the energy conversion so it is necessary to control their behavior as well as their modeling. The objective of this work is to develop realistic laws of material behavior for circuit simulators use. Regarding the static behavior, the Jiles-Atherton model has been implemented and adapted, simplified and modified to improve accuracy and implementation. Dynamic modeling of the material was performed using the model DWM developed into the Ampere laboratory. This model incorporates the excedentary dynamic effects thanks to a "dynamical material law" implemented into the magnetic diffusion equation. Then this model was homogenized to improve its future implementation in a circuit simulator. Each of the different models has been tested and validated on several samples.
174

Physical Boundary as a Source of Anomalies in Transport Processes in Acoustics and Electrodynamics

Bozhko, Andrii 12 1900 (has links)
Various anomalous effects that emerge when the interfaces between media are involved in sound-matter or light-matter interactions are studied. The three specific systems examined are a fluid channel between elastic metal plates, a linear chain of metallic perforated cylindrical shells in air, and a metal-dielectric slab with the interfaces treated as finite regions of smoothly changing material properties. The scattering of acoustic signals on the first two is predicted to be accompanied by the effects of redirection and splitting of sound. In the third system, which supports the propagation of surface plasmons, it is discovered that the transition region introduces a nonradiative decay mechanism which adds to the plasmon dissipation. The analytical results are supported with numerical simulations. The outlined phenomena provide the ideas and implications for applications involving manipulation of sound or excitation of surface plasmons.
175

ELECTRORHEOLOGY FOR ENERGY PRODUCTION AND CONSERVATION

Huang, Ke Colin January 2010 (has links)
Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, sub-micrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. / Physics
176

Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties

De Silva, Vashista C 12 1900 (has links)
The objective of this study is to examine core-shell type plasmonic metamaterials aimed at the development of materials with unique electromagnetic properties. The building blocks of metamaterials under study consist of gold as a metal component, and silica and precipitated calcium carbonate (PCC) as the dielectric media. The results of this study demonstrate important applications of the core-shells including scattering suppression, airborne obscurants made of fractal gold shells, photomodification of the fractal structure providing windows of transparency, and plasmonics core-shell with a gain shell as an active device. Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction. Significant extinction from the visible to mid-infrared makes fractal shells very attractive as bandpass filters and aerosolized obscurants. In contrast to the planar fractal films, where the absorption and reflection equally contribute to the extinction, the shells' extinction is caused mainly by the absorption. This work shows that the Mie scattering resonance of a silica core with 780 nm diameter at 560 nm is suppressed by 75% and only partially substituted by the absorption in the shell so that the total transmission is noticeably increased. Effective medium theory supports our experiments and indicates that light goes mostly through the epsilon-near-zero shell with approximately wavelength independent absorption rate. Broadband extinction in fractal shells allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. Au fractal nanostructures grown on PCC flakes provide the highest mass normalized extinction, up to 3 m^2/g, which has been demonstrated in the broad spectral range. In the nanoplasmonic field active devices consist of a Au nanoparticle that acts as a cavity and the dye molecules attached to it via thin silica shell as the active medium. Such kind of devices is considered as a nano-laser or nano-amplifier. The fabricated nanolasers were studied for their photoluminescence kinetic properties. It is shown that the cooperative effects due to the coupling of dye molecules via Au nanoparticle plasmons result in bi-exponential emission decay characteristics in accord with theory predictions. These bi-exponential decays involve a fast superradiant decay, which is followed by a slow subradiant decay. To summarize, this work shows new attractive properties of core-shell nanoparticles. Fractal Au shells on silica cores prove to be a good scattering suppressor and a band pass filter in a broadband spectral range. They can also be used as an obscurant when PCC is used as the core material. Finally, gold nanoparticles coated with silica with dye results in bi-exponential decays.
177

Nanophotonics of Plasmonic and Two-Dimensional Metamaterials

Roccapriore, Kevin M 08 1900 (has links)
Various nanostructured materials display unique and interesting optical properties. Specific nanoscale objects discussed in an experimental perspective in this dissertation include optical metamaterials, surface plasmon sensors, and two-dimensional materials. These nanoscale objects were fabricated, investigated optically, and their applications are assessed. First, one-dimensional magnetic gratings were studied, followed by their two-dimensional analog, the so-called "fishnet." Both were fabricated, characterized, and their properties, such as waveguiding modes, are examined. Interestingly, these devices can exhibit optical magnetism and even negative refraction; however, their general characterization at oblique incidence is challenging due to diffraction. Here, a new method of optical characterization of metamaterials which takes into account diffraction is presented. Next, surface plasmon resonance (SPR) was experimentally used in two schemes, for the first time, to determine the transition layer characteristics between a metal and dielectric. The physics of interfaces, namely the singularity of electric permittivity and how it can be electrically shifted, becomes clearer owing to the extreme sensitivity of SPR detection mechanisms. Finally, ultra-thin two-dimensional semiconducting materials had their radiative lifetime analyzed. Their lifetimes are tuned both by number of atomic layers and applied voltage biasing across the surface, and the changes in lifetime are suspected to be due to quenching or enhancement of non-radiative process rates.

Page generated in 0.1079 seconds