Spelling suggestions: "subject:"physique mésoscopique"" "subject:"physique mésoscopiques""
1 |
Physique Interfeuillet dans les Nanotubes de Carbone MultifeuilletsBourlon, Bertrand 09 September 2005 (has links) (PDF)
Cette thèse a pour objet l'étude expérimentale des propriétés électroniques et mécaniques des nanotubes de carbone multifeuillets. Cela nécessite de trouver des méthodes pour mesurer le courant dans les feuillets internes ou encore sonder les propriétés électroniques/mécaniques interfeuillets. L'accès à ces informations reste cependant difficile car les électrodes ne sont en contact direct qu'avec le feuillet externe. Dans le régime linéaire, à basse tension, des mesures de résistance quatre points montrent qu'essentiellement deux feuillets participent à la conduction, et donnent accès à la première mesure de la conductance interfeuillet. A haute tension, une technique permettant d'enlever un à un les différents feuillets met en évidence qu'une majorité de feuillets transportent, selon leur géométrie, un courant de saturation compris entre 10 et 60 microampères. Ceci montre une faible variation du nombre de modes transportant du courant, en bon accord avec un mécanisme tunnel Zener entre sous-bandes non croisées. Enfin, cette technique est utilisée afin de mesurer le frottement mécanique entre deux feuillets en rotation. Pour cela, un nouveau type de nano-système électromécanique a été fabriqué, représentant une première étape pour la réalisation d'un nano-moteur.
|
2 |
Nano-refroidissement électronique et couplages thermiques dans les circuits hybrides supraconducteurs / Electronic refrigeration and thermal couplings in supraconductor hybrid devicesPascal, Laëtitia 30 March 2012 (has links)
Le refroidissement électronique de jonctions tunnel Supraconducteur - Isolant - métal Normal (S-I-N) a lieu grâce la bande d'énergie interdite du supraconducteur, qui agit tel un filtre laissant passer les électrons les plus énergétiques par effet tunnel. Cependant, l'efficacité de tels refrigérateurs électroniques est habituellement plus faible que les prédictions théoriques. Après l'introduction des équations basiques décrivant le refroidissement électronique dans une jonction tunnel, nous présentons les différentes limitations fondamentales, parmi elles les couplages thermiques entre bains thermiques d'électrons ou de phonons et la relaxation des quasi-particules. Afin d'avoir une meilleure compréhension des différents couplages thermiques en jeu, nous avons mis au point une expérience permettant de mesurer indépendamment la température des électrons et des phonons. Un réfrigérateur hors équilibre est ainsi étudié dans les régimes de refroidissement et de chauffage. Les résultats sont interprétés en utilisant un modèle thermique qui tient compte des transferts de chaleur entre électrons, phonons et photons. En particuliers, le canal photonique de chaleur lié au bruit thermique dans les résistances du circuit apporte une contribution de chaleur supplémentaire dépendant de la transmission du circuit de couplage. Enfin nous nous sommes intéressées à l'amélioration du refroidissement électronique sous champ magnétique, facilitant la relaxation des quasi-particules dans le supraconducteur. Enfin nous avons développer un procédé de fabrication permettant d'obtenir de large jonctions S-I-N-I-S avec un ilôt métallique suspendu totalement découplé du substrat. / Electronic cooling in Superconductor - Insulator - Normal metal (S-I-N) junction is based on the energy selectivity of electron tunneling induced by the superconductor energy gap. Nevertheless, the efficiency of coolers based on such junctions is usually significantly less than theoretically expected. After introducing the principle of superconducting micro-coolers, we present the fundamental limitations to electronic cooling. We focus on the different thermal couplings between electron and phonon thermal baths and the relaxation of hot quasi-particles deposited in the superconductor. We have designed an experiment to monitor independently electron and phonon temperatures. An electronic cooler was studied under out-of-equilibrium conditions, in both the cooling and the heating regimes. The results are interpreted using a thermal model, which takes into account the heat transfers between the electron, phonon and photon baths. In particular, the photonic heat flow related to the thermal noise arising in the circuit resistors can bring an additional heat contribution, depending on the transmission of the biasing circuit. Moreover, we investigate the enhancement of quasi-particles relaxation under magnetic field, leading to an enhanced quasi-particle relaxation. Finally we develop a process enabling to fabricate a S-I-N-I-S cooler with large junctions and a suspended Normal metal island decoupled from the substrate.
|
3 |
COUPLAGE DE CIRCUITS DE BOÎTES QUANTIQUES A DES CAVITES MICROONDESDelbecq, Matthieu 17 September 2012 (has links) (PDF)
CETTE THESE A EU POUR OBJET DE REALISER EXPERIMENTALEMENT L'INTEGRATION DE CIRCUITS DE BOITE QUANTIQUE (QD) DANS UNE ARCHITECTURE D'ELECTRODYNAMIQUE QUANTIQUE EN CAVITE SUR CIRCUIT (CQED). L'INTERET DE CES SYSTEMES HYBRIDES RESIDE DANS L'INTERACTION LUMIERE-MATIERE QUI S'OPERE ENTRE LES PHOTONS DE LA CAVITE MICROONDE ET LES ELECTRONS DU QD. DANS CE TRAVAIL DE THESE, IL A ETE CHOISI D'UTILISER DES NANOTUBES DE CARBONE COMME MATERIAU POUR LES QDS. EN EFFET, ILS PERMETTENT L'OBSERVATION DE DIFFERENTS REGIMES DE TRANSPORT ELECTRONIQUE (FABRY-PEROT, BLOCAGE DE COULOMB ET KONDO) ET ILS SONT EGALEMENT POLYVALENTS VIS-A-VIS DES MATERIAUX AVEC LESQUELS IL EST POSSIBLE DE LES CONTACTER (METAL NORMAL, SUPRACONDUCTEUR, FERROMAGNETIQUE). LA REALISATION EXPERIMENTALE DE CES DISPOSITIFS A PERMIS DE MESURER UN COUPLAGE ELECTRON-PHOTON DE L'ORDRE DE 100MHZ, COMPARABLE AUX COUPLAGES OBTENUS EN CQED TRADITIONNELLE. CE COUPLAGE EST REGLABLE PAR DES MOYEN PUREMENT ELECTRIQUES. ENFIN, NOUS AVONS MIS EN EVIDENCE L'INTERACTION A DISTANCE ENTRE DEUX QDS SEPARES DE 80µM, PAR L'INTERMEDIAIRE DES PHOTONS MICROONDES. CES RESULTATS DEMONTRENT LE POTENTIEL DE CES DISPOSITIFS POUR DES APPLICATIONS A LA MANIPULATION DE L'INFORMATION QUANTIQUE AINSI QUE LA SIMULATION SUR PUCE DE PROBLEMES DE MATIERE CONDENSEE. NOUS AVONS PU AINSI MESURER LA CAPACITE QUANTIQUE DES QDS, NOTAMMENT DANS LE REGIME KONDO, ET SIMULER LE DECALAGE POLARONIQUE ELECTRON-PHONON, DANS LE CAS DE L'INTERACTION A DISTANCE ENTRE LES DEUX QDS.
|
4 |
Nano-refroidissement électronique et couplages thermiques dans les circuits hybrides supraconducteursPascal, Laëtitia 30 March 2012 (has links) (PDF)
Le refroidissement électronique de jonctions tunnel Supraconducteur - Isolant - métal Normal (S-I-N) a lieu grâce la bande d'énergie interdite du supraconducteur, qui agit tel un filtre laissant passer les électrons les plus énergétiques par effet tunnel. Cependant, l'efficacité de tels refrigérateurs électroniques est habituellement plus faible que les prédictions théoriques. Après l'introduction des équations basiques décrivant le refroidissement électronique dans une jonction tunnel, nous présentons les différentes limitations fondamentales, parmi elles les couplages thermiques entre bains thermiques d'électrons ou de phonons et la relaxation des quasi-particules. Afin d'avoir une meilleure compréhension des différents couplages thermiques en jeu, nous avons mis au point une expérience permettant de mesurer indépendamment la température des électrons et des phonons. Un réfrigérateur hors équilibre est ainsi étudié dans les régimes de refroidissement et de chauffage. Les résultats sont interprétés en utilisant un modèle thermique qui tient compte des transferts de chaleur entre électrons, phonons et photons. En particuliers, le canal photonique de chaleur lié au bruit thermique dans les résistances du circuit apporte une contribution de chaleur supplémentaire dépendant de la transmission du circuit de couplage. Enfin nous nous sommes intéressées à l'amélioration du refroidissement électronique sous champ magnétique, facilitant la relaxation des quasi-particules dans le supraconducteur. Enfin nous avons développer un procédé de fabrication permettant d'obtenir de large jonctions S-I-N-I-S avec un ilôt métallique suspendu totalement découplé du substrat.
|
5 |
Dynamique térahertz des nanotubes de carbone / Terahertz dynamics of carbon nanotubesBaillergeau, Matthieu 10 December 2015 (has links)
Le développement de circuits mesoscopiques avec une architecture hybride cette dernière décennie a permis d’étudier l’interaction lumière matière dans son aspect fondamental avec des photons dans le régime micro-ondes. Ces développements permettent aujourd’hui d’étudier cette interaction dans le domaine terahertz, gamme spectrale s’étendant de 0.1 THz à 10 THz (0.4 meV-41,3 meV). L’apparition de sources performantes et de méthodes de spectroscopie efficaces telles que la spectroscopie dans le domaine temporel sont des outils utilisables pour l’étude de l’interaction lumière matière dans ce domaine spectral. Dans ce travail de thèse, nous avons développé un outil afin d’étudier cette interaction dans son aspect le plus fondamental composé d’un nanotube de carbone en régime de boîte quantique et d’une cavité térahertz. Le nanotube de carbone est un élément d’autant plus adapté que sa structure électronique est régie par des énergies dont la fréquence équivalente se situe dans le terahertz. La cavité térahertz est un "split ring resonator". Le travail s’est décomposé en deux aspects, avec dans un premier temps le développement d’un banc de spectroscopie térahertz large bande (0.3 THz-20 THz) dans le domaine temporel pour l’étude des résonateurs. En utilisant un procédé original de contrôle du front d’onde d’émission de l’antenne, nous démontrons que le champ térahertz est focalisé en limite de diffraction ce qui ouvre la possibilité d’étudier des résonateurs uniques. Dans un second temps, des mesures de transport électronique ont été effectuées afin de mettre en évidence un couplage entre le résonateur et la boîte quantique. Un couplage avec un mode bosonique est observé. La conductance de ces états est modulée par la source de photons utilisée dans cette étude. Cependant, l’énergie du mode est inférieure à celle observée par les mesures de spectroscopie ne permettant pas de conclure de manière définitive sur l’origine de ce mode. / In the last ten years, research has been devoted to the development of hybrid architecture mesoscopic circuit to study the ligh-matter interaction in the microwaves range. These improvements allow us to study this interaction in the terahertz range extending from 0.1 THz to 10 THz (0.4 meV - 41.3 meV). Moreover, new efficient sources and new spectroscopy schemes like time domain spectroscopy set-up are some tools that can be used to study the light-matter interaction in this range. In this work, we developed a paradigm to study the interaction in the fundamental aspect composed of a carbon nanotube in a quantum dot regime embedded in a terahertz cavity. Carbon nanotube quantum dot is well adapted because of its electronic levels which are separated by energy in the terahertz range. The cavity used for the study is a "split ring resonator". This thesis is decomposed in two parts. Firstly, we built an ultrabroadband terahertz time domain spectroscopy set-up (0.3 THz -20 THz) to study the terahertz resonators. We demonstrated that the terahertz field is focused at the diffraction limit by exciting the antenna with an original scheme based on a control wavefront. Then, electronic transport measurements have been done to highlight the coupling between the cavity and the quantum dot. A coupling with a bosonic mode is observed. The conductance of these states is modified by the source that we used in this work. However, the energy of the observed mode is lower than the fundamental energy mode of the cavity that do not allow us to conclude about the origin of this mode.
|
6 |
Investigation expérimentale des interactions dans les circuits mésoscopiques : décohérence quantique, transferts d'énergie, blocage de Coulomb, effet de proximitéPierre, Frédéric 06 May 2011 (has links) (PDF)
Les travaux de recherche décrits dans ce mémoire couvrent plusieurs phénomènes spécifiques à la physique mésoscopique des nanocircuits. Une large part de ces travaux porte sur la compréhension des mécanismes d'interactions à l'œuvre et de leur impact sur le temps de cohérence quantique, les transferts d'énergie, la nature des états électroniques ainsi que sur l'électrodynamique des nanocircuits électriques et l'effet de proximité supraconducteur. Dans ce mémoire j'ai cherché pour chacun de mes thèmes de recherche à décrire le cadre dans lequel se situe le travail et à expliquer les principaux résultats. Le lecteur est invité à se référer aux articles pour plus de détails.
|
7 |
Supraconductivité et localisation dans des nanofils unidimensionnels d'InSb et d'InAs / Superconductivity and localization in one-dimensional InSb and InAs nanowiresEstrada Saldaña, Juan Carlos 09 June 2017 (has links)
Dans ma thèse, j'ai étudié le transport électronique quantique dans des nanofils semiconducteurs couplés aux supraconducteurs, avec le but de comprendre les conditions nécessaires pour observer des états liés de Majorana. De manière inattendue, au cours de mes expériences j'ai trouvé des exemples notables de l'omniprésence de la localisation spatiale des électrons dans des nanofils apparemment balistiques et unidimensionnels (1D). Ses effets peuvent imiter des signatures d'unidimensionnalité, d’hélicité et des états liés de Majorana, jetant un doute sur leur interprétation.La conductance d’un nanofil 1D est quantifiée et censée montrer des plateaux a des multiples entiers du quantum de conductance. Curieusement, le transport dans un nanofil d'InAs qui hébergeait une boite quantique à un seul niveau a montré qu'il pouvait répliquer les deux premiers plateaux résolus en spin. Une mesure du courant Josephson sous un champ magnétique a révélé les transitions d'état fondamental d'un électron qui occupait ce niveau et confirmé sa nature localisé.Dans le régime hélicoïdal, une chute de la conductance est prédite au milieu de chaque plateau de conductance. De façon étonnante, des dispositifs à base de nanofils uniques d'InSb hébergeant une boite quantique qui conduisait en parallèle avec le canal 1D ont reproduit la même signature.Enfin, la présence des états liés de Majorana, devrait être décelée par un pic à tension de biais nul (ZBP) lors d’une spectroscopie tunnel. Dans un des échantillons à deux canaux mentionnés précédemment, lorsque le canal unidimensionnel était fermé, un ZBP a émergé dans le gap supraconducteur sous un champ magnétique parallèle au nanofil. Ce ZBP a été attribué aux états liés d'Andreev de la boite quantique. Dans une expérience différente faite avec une jonction Josephson à base d'un nanofil d'InAs hébergeant une boite quantique, un ZBP relié au courant Josephson est apparu dans le gap supraconducteur comme le résultat d'une transition de l'état fondamental singlet de la boite quantique vers un état doublet.Malgré la localisation, il a été possible d'extraire des informations significatives sur le régime 1D. Le rôle des grilles a été majeur dans la détermination des dégénérescences sous un champ magnétique des sous-bandes d’un nanofil d'InSb présentant deux canaux de conduction en parallèle. En jouant avec leurs tensions de seuil, effets orbitaux, et facteurs gyromagnétiques, la tension de grille pouvait changer les énergies des sous-bandes appartenant à chaque canal, de manière à les verrouiller ensemble. Grace à ce mécanisme, il a été possible d’observer un plateau à 2e^2/h jusque à de forts champ magnétiques sans aucune apparition d'un plateau à 1e^2/h. La possible existence des deux fils quantiques dans un seul nanofil ouvre la voie à l'observation des états hélicoïdaux et des états liés de Majorana de nature fractionnel.Dans l'ensemble, ces résultats pointent vers la nécessité d'une meilleure compréhension de la physique des dispositifs à base de nanofils d'InAs et d'InSb. Des études supplémentaires dans l'état supraconducteur et normal doivent être réalisées sur des dispositifs plus simples avec un faible nombre de grilles, avant de faire l'étude et manipulations des états liés de Majorana dans des systèmes plus complexes, dont les signatures de localisation pourraient être mieux cachées. Ces résultats originaux vont être publiés dans les mois qui suivent dans quatre articles différents. / In my thesis, I studied low-temperature electronic transport in semiconductor nanowires coupled to superconductors, with the goal of understanding the requirements to observe Majorana bound states. Unexpectedly, I found dramatic examples of the pervasiveness of spatial localization of electrons even in seemingly ballistic one-dimensional (1D) nanowires. Localization could replicate signatures of one-dimensionality, helicity and Majorana bound states, casting a shadow of doubt on their interpretation.1D nanowires are expected to show plateaus of quantized conductance. Curiously, transport through an InAs nanowire hosting a single-level quantum dot showed that it could mimic the first two spin-resolved plateaus. A measurement of the Josephson supercurrent under magnetic field revealed the ground-state transitions of an electron occupying this level, confirming its localized nature.In the helical regime, a conductance dip is predicted to appear in each of the conductance plateaus. Surprisingly, InSb nanowire devices hosting a quantum dot conducting in parallel with a 1D channel reproduced this signature.The presence of Majorana bound states, in turn, should be revealed by a zero-bias peak (ZBP) in tunnel spectroscopy. In one of the two-path devices mentioned above, when the 1D path was closed, a zero-bias peak emerged inside the superconducting gap under a magnetic field parallel to the nanowire. This ZBP was related to trivial Andreev bound states from the quantum dot in parallel to the 1D channel. In a different experiment done in an InAs nanowire Josephson junction device hosting a quantum dot, a ZBP related to a Josephson supercurrent appeared inside of the superconducting gap as a result of a transition of the ground-state of the dot from a singlet to a doublet.In spite of localization, it was possible to extract some meaningful information about the 1D regime. The role of the gates was major in determining the degeneracy of the subbands in an InSb nanowire with two 1D conduction paths in parallel under magnetic field. Through a direct influence on their threshold voltages, orbital effects, and g-factors, the gate voltage could shift the energies of the subbands and lock them together. Via this mechanism, it was possible to observe a 2e^2/h plateau lasting until very large field without the appearance of a 1e^2/h plateau. The possible existence of two quantum wires in a single nanowire opens the door for novel helical and Majorana bound states of fractional nature.Altogether, these results point to the need of a better understanding of the physics of simpler few-gates short-channel InAs and InSb nanowire superconducting and normal-state devices, before committing to the utterly complex devices that should be fabricated to study and manipulate Majorana bound states, in which signatures of localization could be better hidden. These original results will be published in the coming months in four different articles.
|
8 |
Contribution aux théories quantiques du transfert de spin, du transport à l'échelle mésoscopique et de la fusion à deux dimensionsWaintal, Xavier 08 April 2008 (has links) (PDF)
Ce mémoire de HDR est conçu comme un guide de lecture. Pour chacun de mes thèmes de recherche, j'ai cherché à décrire le cadre dans lequel se situe le travail et à en expliquer les résultats principaux. Le lecteur est invité à se réferrer aux articles pour plus de détails, notamment sur le développement des outils théoriques. Cette notice couvre la période allant d'octobre 2000 (début de mon postdoc à Cornell) à septembre 2007.
|
Page generated in 0.0604 seconds