• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxidation of plant allelochemicals by phytophagous sucking insects

Lorraine, Debrah F. January 1995 (has links) (PDF)
Addendum in pocket. Biblography: leaves 162-173. Phytophagous sucking insects, aphids in particular, are common pests of plants. These insects secrete salivary enzymes into their food material. One plant defence mechanism is the induction and/or accumulation of deterrent phytochemicals. In the present study, a model enzyme system was chosen to mimic the oxidative activity of insect saliva. Isolation and sructural identification of the products of plant allelochemicals was achieved for several substrates. Insects were also exposed to individual plant chemicals in feeding "choice" tests. Preliminary examinations suggest that plants containing increased levels of phenolic allelochemicals show correlated increases in resistance to attack by aphids.
2

Oxidation of plant allelochemicals by phytophagous sucking insects / by Debrah F. Lorraine.

Lorraine, Debrah F. January 1995 (has links)
Addendum in pocket. / Biblography: leaves 162-173. / v, 177, [5] leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Phytophagous sucking insects, aphids in particular, are common pests of plants. These insects secrete salivary enzymes into their food material. One plant defence mechanism is the induction and/or accumulation of deterrent phytochemicals. In the present study, a model enzyme system was chosen to mimic the oxidative activity of insect saliva. Isolation and sructural identification of the products of plant allelochemicals was achieved for several substrates. Insects were also exposed to individual plant chemicals in feeding "choice" tests. Preliminary examinations suggest that plants containing increased levels of phenolic allelochemicals show correlated increases in resistance to attack by aphids. / Thesis (Ph.D.)--University of Adelaide, Dept. of Crop Protection, 1996

Page generated in 0.1033 seconds