• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de la diversité génétique des gènes d'avirulence chez Phytophthora sojae

Arsenault-Labrecque, Geneviève 03 January 2022 (has links)
L'utilisation de lignées de soya possédant différents gènes Rps (« Resistant to Phytophthorasojae ») demeure la meilleure méthode de lutte pour combattre la pourriture phytophthoréenne. La résistance conférée par les gènes Rps repose sur le concept gène-pour-gène où une relation existe entre un gène de résistance (gène Rps) chez la plante et un facteur d'avirulence correspondant (gène Avr) chez l'agent pathogène. Sept gènes Rps ont été introduits avec succès dans les cultivars commerciaux, soit les gènes Rps1a, Rps1b, Rps1c, Rps1d, Rps1k, Rps3a et Rps6. À long terme, l'agent pathogène arrive à contourner la résistance conférée par ces différents gènes Rps par la diversification génétique de ces gènes d'avirulence, entraînant la complexification des pathotypes de P. sojae. Afin d'exploiter efficacement ce type de résistance, il devient donc primordial de pouvoir identifier ces pathotypes pour connaître l'interaction des différentes souches de P. sojae avec les gènes Rps utilisés. Ce projet de doctorat avait donc comme objectif une meilleure compréhension de la diversité haplotypique des populations de P. sojae, concernant l'interaction avec les gènes Rps d'intérêt commercial, afin de permettre aux producteurs de faire un choix éclairé qu and vient le temps de choisir des lignées résistantes à la maladie. Dans un premier volet de recherche, notre hypothèse stipulait que l'analyse des variations nucléotidiques et structurales associées aux sept principaux gènes d'avirulence de P. sojae permettrait d'identifier le spectre des haplotypes associés aux phénotypes des isolats, relativement à leur compatibilité avec les gènes de résistance Rps correspondants. Le séquençage du génome complet de 31 isolats représentant la diversité des pathotypes canadiens a permis d'identifier les différents haplotypes des sept principaux gènes d'avirulence (1a, 1b, 1c, 1d, 1k, 3a et 6) et d'y associer un profil de virulence pour chaque gène Rps correspondant. L'utilisation d'une méthode de phénotypage en bassin hydroponique a permis de constater que le test traditionnel d'inoculation de l'hypocotyle menait à une proportion importante de faux positifs, ce qui a pu nuire à la compréhension de certaines interactions Rps-Avr par le passé. Notre étude a révélé que l'utilisation unique des signatures génomiques permettait de prédire 99,5 % des interactions possibles et que ces dernières pouvaient donc être utilisées pour prédire précisément le profil de virulence des isolats de P.sojae. Ces résultats ont mené à notre deuxième volet de recherche qui visait à démontrer que les marqueurs discriminants identifiés dans le premier volet de l'étude permettraient de s'affranchir du test de phénotypage, par le développement d'un outil moléculaire de type multiplex PCR, capable de prédire le pathotype des isolats de P. sojae. Des amorces spécifiques permettant d'amplifier les allèles associés à l'avirulence envers chaque gène Rps ont été conçues et multiplexées. Le multiplex PCR développé a démontré une efficacité de 97 % lorsque testé sur un panel d'isolats au profil inconnu de virulence. Le troisième volet de recherche visait à mieux comprendre l'interaction de P. sojae avec le gène de résistance Rps8. Notre hypothèse suggérait que l'avirulence de P. sojae envers le produit du gène de résistance Rps8 était déterminée par un effecteur RXLR, codé par un gène d'avirulence correspondant. L'analyse d'une descendance F2 en ségrégation par génotypage par séquençage couplée à l'utilisation des données de séquençage des 31 isolats de P. sojae a permis de cibler Avr3a comme le meilleur gène candidat. En utilisant la méthode d'édition de génome médiée par CRISPR/Cas9, nous avons démontré que le knock-out complet du gène Avr3a chez P. sojae induisait un gain de virulence envers Rps8. Nous avons aussi démontré qu'un allèle spécifique d'Avr3a était reconnu de façon différentielle par Rps3a et Rps8, ce qui représente la première distinction nette entre ces deux gènes de résistance. L'ensemble de ce projet de doctorat a permis de fournir de nouvelles informations sur la complexité des gènes Avr en plus de démontrer que leurs signatures génomiques pouvaient être utilisées pour prédire précisément l'interaction de l'agent pathogène avec les différents gène Rps du soya. Le développement d'un test moléculaire simple et précis offre aux producteurs et sélectionneurs une solution concrète afin d'exploiter efficacement l'utilisation des gènes Rps. L'identification du gène d'avirulence reconnu par Rps8 permet également d'avoir une longueur d'avance dans la gestion de la maladie, en prévision de l'apparition inévitable de nouveaux pathotypes dans le futur. / The use of soybean lines with different Rps ("Resistant to Phytophthora sojae") genes remains the best control method to control Phytophthora root rot. The resistance conferred by Rps genes is based on the gene-for-gene concept where a relationship exists between a resistance gene (Rps gene) in the plant and a corresponding avirulence factor (Avr gene) in the pathogen. Seven Rps genes have been successfully introduced into commercial cultivars, namely Rps1a, Rps1b, Rps1c, Rps1d, Rps1k, Rps3a and Rps6. In the long term, the pathogen manages to by pass the resistance conferred by these different Rps genes by the genetic diversification of its avirulence genes, leading to the complexification of P. sojae pathotypes. To effectively exploit this type of resistance, it is therefore essential to be able to identify those pathotypes in order to know the interaction of the different strains of P. sojae with the Rps genes in use. This doctoral project aims to have a better understanding of the haplotypic diversity of P. sojae populations, concerning their interaction with the Rps genes of commercial interest, in order to allow producers to make an informed choice when the time comes to choose soybean lines resistant to the disease. In a first approach, our hypothesis stipulated that the analysis of the nucleotide and structural variations associated with the seven main avirulence genes of P. sojae would allow the identification of the spectrum of haplotypes associated with the phenotypes of the isolates, relative to their compatibility with the corresponding Rps resistance genes. The whole-genome-sequencing of 31 isolates representing the diversity of Canadian pathotypes made it possible to identify the different haplotypes of the seven main avirulence genes (1a, 1b, 1c, 1d, 1k, 3a and 6) and to associate a virulence profile for each corresponding Rps gene. The use of a hydroponic phenotyping method showed that the traditional hypocotyl inoculation test leads to a high proportion of false positives, which could have hampered the understanding of certain Rps-Avr interactions in the past. Our study found that the unique use of genomic signatures predicted 99.5% of the possible interactions and that these could therefore be used to accurately predict the virulence profile of P. sojae isolates. These results led to the second part of this doctoral project, which aimed to demonstrate that the discriminating markers identified in the first part of the study would make it possible to bypass the cumbersome phenotyping method by the development of a molecular tool capable of predicting the pathotype of P. sojae isolates. Specific primers for amplifying the alleles associated with avirulence towards each Rps gene were designed and multiplexed. The multiplex PCR developed demonstrated an efficiency of 97% when tested on a panel of isolates with an unknown virulence profile. The third objective of this project was to understand the interaction of P. sojae with the resistance gene Rps8. Our hypothesis suggested that the avirulence of P. sojae towards the Rps8 resistance gene product was determined by an RXLR effector encoded by a corresponding avirulence gene. Analysis of a segregating F2 progeny by using a genotyping-by-sequencing method coupled with the use of sequencing data from the 31 P. sojae isolates led to the identification of Avr3a as the best candidate gene. Using the CRISPR/Cas9-mediated genome editing method, we demonstrated that the complete knockout of the Avr3a gene in P. sojae induced a gain of virulence towards Rps8. We also demonstrated that a specific Avr3a allele is differentially recognized by Rps3a and Rps8, which results in the first clear distinction between those two resistance genes. This doctoral project provided new information about the complexity of Avr genes and demonstrated that their genomic signatures could be used to precisely predict the interaction of the pathogen with the various Rps genes in soybean. The development of a simple and precise molecular test offers to producers and breeders a concrete solution to effectively exploit the use of Rps genes. Identifying the avirulence gene recognized by Rps8 also provides a head start in disease management, in anticipation of the inevitable emergence of new pathotypes in the future.
2

Développement d'un bioessai moléculaire pour le diagnostic des sept principaux gènes d'avirulence chez Phytophthora sojae

Dussault, Benoit 30 September 2019 (has links)
L’une des principales maladies attaquant le soya est la pourriture phytophthoréenne, causée par l’agent pathogène Phytophthora sojae. La méthode de lutte la plus efficace à ce jour pour contrer cet agent pathogène est la lutte génétique. Des gènes de résistance (Rps) se trouvant naturellement dans certaines lignées de soya sont introgressés dans des cultivars ayant un attrait pour l’agriculture. Cependant, pour définir quel gène Rps utiliser, il est essentiel de connaître les pathotypes de P. sojae se trouvant dans le sol, puisque les gènes Rps reconnaissent les gènes Avr caractérisant les différents pathotypes. Actuellement, les méthodes d’identification des nombreux pathotypes de l’agent pathogène sont des techniques de phénotypage longues et parfois imprécises. Cette étude présente donc le premier outil moléculaire ayant pour but de diagnostiquer rapidementet précisément les pathotypes de P. sojaese trouvant dans un échantillon de sol ou de tissus végétaux infecté. Une étude exhaustive de 31 isolats de P. sojae préalablement réalisée a permis d’identifier des marqueurs discriminants entre les haplotypes de virulence et d’avirulence pour les sept principaux gènes Avr retrouvés en Amérique. Des amorces spécifiques aux différents marqueurs ont été créées. Elles ont par la suite été adaptées afin de pouvoir être utilis.es simultanément dans une PCR multiplexe. Un taux d’efficacité à identifier les gènes d’avirulence présents chez différents isolats de P. sojae de 96% a été atteint lors de l’étude, Avr3a étant le seul gène à présenter des résultats aléatoires. Cela a donc ouvert la porte à d’éventuelles études plus approfondies sur l’interaction entre les gènes Rps3a et Avr3a. Le test sera de plus un outil précieux dans la prise de décision du cultivar à semer pour les producteurs, qui auront désormais accès à plus d’informations quant aux souches de P. sojaese trouvant dans leurs champs.
3

Understanding silicon-mediated disease resistance through the interaction soybean-Phytophthora sojae

Rasooli Zadeh, Aliyeh 17 December 2020 (has links)
Depuis maintenant plusieurs années, il a été démontré que le silicium (Si) protège les plantes dans moult interactions hôte-agent pathogène. Cependant, les mécanismes par lesquels le Siexerce son rôle prophylactique restent flous. Dans les interactions plante-agent pathogène, en particulier dans le cas des agents biotrophes qui reposent fortement sur la formation d’haustoria et la libération d’effecteurs pour leur virulence, l’expression et la localisation des effecteurs dictent souvent le résultat de cette interaction. Il est maintenant connu que le Si s’accumule dans l’apoplaste des tissus végétaux. Étant donné que l'apoplaste est un site clé pour l’interaction entre les effecteurs des agents pathogènes biotrophes et les récepteurs membranaires des cellules végétales, nous avons émis l’hypothèse que le Si interfèrerait avec la reconnaissance effecteur / récepteur, ce qui conduirait à une résistance accrue des végétaux. Lors de mes travaux de doctorat, nous avons préconisé une approche holistique pour l’étude de l’impact du Si dans l’interaction soya-Phytophthora sojae. Brièvement, nous avons analysé les réponses phénotypiques de l’interaction en présence de Si, nous avons effectué une étude histologique poussée sur les racines de soya infecté par P. sojae, nous avons effectué une analyse transcriptomique complète de la plante et de l’agent pathogène au fil du temps, et nous avons tenté de localiser la présence d’effecteurs au niveau subcellulaire grâce à l’immunocytochimie et le marquage à fluorescence. Lors de ces travaux, nous avons pu observer une reconnaissance rapide de l'hôte par P. sojae grâce au développement de corps ressemblant à des haustoria, suivie de l'expression et de la libération d'effecteurs dans la région apoplastique et d'une expression élevée des gènes liés àla défense et ce, à un stade précoce. Chez les plantes préalablement traitées au Si, une pathogenèse limitée a été observée, tandis que l’expression des gènes de défense de la plante était limitée et que la présence d’effecteurs tels le Avr6 était à la baisse dans la région apoplastique. Ces résultats indiquent que le Si interfère avec la reconnaissance de l'hôte par l'agent pathogène, ce qui entraîne une interaction incompatible. / Silicon (Si) has been shown to protect plants in a number of host-pathogen interactions, however, the mechanisms by which it exerts its prophylactic role remain elusive. In plantpathogen interactions, especially a biotroph that relies heavily on the formation of haustorium and release of effectors for its virulence, the expression, and localization of effectors will often dictate the outcome of that interaction. Given that the apoplast is a key site of interaction between effectors and plant defenses receptors, as well as the site of amorphous-Si accumulation, it is not unlikely that Si interferes with effector/receptor recognition, which would lead to an incompatible interaction. We have conducted a holistic approach by studying the impact of Si in the interaction soybean-Phytophthora sojae through analysis of the phenotypic responses, the histology of P.sojae-infected soybean roots, gene expression analyses for the plant and the pathogen over time, and sub-cellular localization of target effectors through immunolocalization and fluorescence-labeling. In control plants, we observed a rapid host recognition by P. sojae through the development of the haustorium-like bodies, followed by expression and release of effectors into the apoplastic region and high expression of defense-related genes at early-stage (2-4 dpi). A Si treatment resulted in limited pathogen development, and significantly lower expression and presence of Avr6 in the apoplastic region, as well as a significant reduction in expression of plant defense genes. These results indicate that the Si interferes with host recognition by the pathogen which translated into an incompatible interaction.

Page generated in 0.0576 seconds