Spelling suggestions: "subject:"phytoplankton populations"" "subject:"hytoplankton populations""
11 |
Phytoplankton dynamics in a seasonal estuary /Chan, Terence. January 2006 (has links)
Thesis (Ph.D.)--University of Western Australia, 2006\
|
12 |
Phytoplankton productivity and Milankovitch Cycles in the Cenomanian-Turonian Bridge Creek member of the Greenhorn Formation in southeastern ColoradoRutherford, Scott David 10 January 2009 (has links)
Statistical analyses of palynomorph assemblages from the Upper Cretaceous Bridge Creek Member (Greenhorn Formation) near Pueblo, Colorado suggest that the micritic limestone/organic rich-shale cycles of the Bridge Creek may have been caused by a combination of fluctuating primary productivity and humid/arid climate cycles.
Species richness and evenness indices for palynomorph assemblages from 24 Bridge Creek beds were statistically analyzed using Analysis of Variance. The results indicate that assemblages for the limestone beds exhibit greater evenness and richness indices than do assemblage from the shale beds. Because phytoplankton communities typically exhibit lower evenness and richness values in eutrophic conditions, these results are consistent with possible surface water eutrophication during times of shale deposition. During times of high primary productivity, the aerobic oxidation of large amounts of organic matter settling to the sea floor may have consumed the oxygen available at depth creating an anaerobic environment and facilitating the preservation of organic carbon.
Riverine input to the seaway also contributed to cycle production. It appears that shale was deposited during humid periods when riverine runoff provided terrigenous material necessary for shale deposition. The flow of isotopically-light fresh water to the seaway during times of shale deposition is supported by lighter 𝛿¹⁸O values in the shale beds.
The fluctuating primary productivity and humid/arid cycles may have been caused by Milankovitch Cycle-driven climate change. Climate models indicate that insolation fluctuations driven by the precessional or obliquity cycle may have periodically increased upwelling along the eastern margin of the Cretaceous Interior Seaway and influenced rainfall patterns. At appears that organic rich shale was deposited when upwelling, nutrient-rich bottom water stimulated planktonic productivity and rainfall transported terrigenous material to the seaway. / Master of Science
|
13 |
Estimating the distribution and production of microplankton in a coastal upwelling front from the cellular content of guanosine-5 triphosphate and adenosine-5 triphosphateJori, Carol Diane. January 1981 (has links)
Thesis (M.S.)--Naval Postgraduate School, 1981. / Cover title. "September 1981." Includes bibliographical references (leaves 108-120).
|
14 |
Phytoplankton chlorophyll a concentration and community structure in two temporarily open/closed estuaries in the Eastern Cape, South AfricaGama, Phumelele Thuthuka January 2008 (has links)
River flow is important in controlling phytoplankton distribution in estuaries. Data on the effect of river inflow on phytoplankton distribution patterns in temporarily open/closed estuaries is lacking. This study investigated the influence of river inflow on size-fractionated phytoplankton biomass (Chl a), community composition and environmental parameters measured monthly over three years in two temporarily open/closed estuaries in the Eastern Cape, South Africa. A once-off primary production study over an annual cycle was completed in the Van Stadens and Maitland estuaries. The study monitored physical, chemical and biological characteristics in both estuaries to examine the effects of changes in environmental factors and river inflow. Daily sampling of physico-chemical and biological variables from river to sea was carried out in the Van Stadens to investigate short-time scale effects of changes in environmental factors and river inflow on the phytoplankton biomass. Five and three stations in the main channel of the Van Stadens and Maitland estuaries respectively were sampled at 0.5 m below the water surface and 0.5 m above the sediment surface for biological and chemical variables and at the surface, 0.25 m and every 0.5 m thereafter for physical parameters. Five stations adjacent to the main channel along the estuary were monitored for groundwater macronutrient concentrations and five additional sites located within the upper catchment of the Van Stadens River were sampled on a quarterly basis over two years. Both estuaries were characterised by distinct hydrological conditions, an overwash, an open, a closed and a semi-closed mouth phase. Flooding in the Maitland and Van Stadens estuaries in 2001 and 2002 caused sediment scour, altered channel morphology and brought about breaching of the mouth. Flood driven mouth-breaching events occurred three and four times in each of the estuaries during the study. The mouth stayed open 20 – 25 percent and was closed 60 – 65 percent of the time. In the Van Stadens the closed overwash mouth condition occurred approximately 10 – 20 percent of the time while in the Maitland it occurred less with the semi-closed mouth condition occurring 10 – 20 percent of the time. Incidents related to mouth opening not associated with strong river floods occurred approximately 10 – 15 percent of the time, although in the Maitland a semi-closed mouth state persisted more frequently than in the Van Stadens Estuary. During flooding events salinity dropped to low levels (< 5 psu) but soon recovered to brackish conditions when river flow was reduced and marine water penetrated deep upstream. Reduction in river flow combined with marine sediment deposition resulted in the closure of the mouth. During closed mouth conditions strong onshore storm surges and spring high tides introduced marine water through overwash that kept salinity high. In both estuaries salinity showed a negative correlation with rainfall (R2 = 0.12), indicative of the strong influence of marine overwash that kept salinity high thus masking the influence of freshwater. High rainfall in the Van Stadens Estuary caused high levels of turbidity that reduced light penetration at depth. Light attenuation was positively correlated with the high rainfall (R 2 = 0.26) suggesting that increased turbidity was linked to rainfall induced discharge. In contrast, in the Maitland Estuary light attenuation did not show any correlation with increased rainfall possibly because of the reduced water depth and increased euphotic zone following the floods in 2002. High river inflow introduced macronutrients in both estuaries such that dissolved inorganic phosphates (DIP) and dissolved inorganic nitrogen (DIN) concentrations in the Van Stadens Estuary were strongly correlated with rainfall (R2 = 0.78 and 0.57 respectively). In the Maitland Estuary DIP and DIN concentrations remained significantly higher (p < 0.05) compared to that in the Van Stadens suggesting that the Maitland catchment contributed greater nutrient input into the estuary and may be associated with farming activities. Phytoplankton chlorophyll a (Chl a) ranged from 0.8 – 13.9 μg L-1 in the Van Stadens and in the Maitland Estuary from 5.3 – 138 μg L-1 during the 3-year study. During the open mouth condition Chl a biomass and primary production ranged from 5.4 – 52.9 μg Chl a L-1 and 1.2 – 11.7 mg C m-2 d-1 in the Maitland and in the Van Stadens from 1.6 – 9.8 μg Chl a L-1 and 1.2 - 14 mg C m-2 d-1 respectively. Maximum annual primary production in the Maitland and Van Stadens estuaries was 8.8 and 5.1 g C m-2 y-1 respectively. When the mouth was open in the Van Stadens Estuary the microphytoplankton (> 20 μm) accounted for > 65 percent of the Chl a, whereas during closed mouth conditions they accounted for about 55 percent of the Chl a biomass. Chlorophytes became the dominant taxon in the dry summer months but were replaced by cryptophytes and dinoflagellates during the wet season. When nutrient concentrations were low during low flow conditions in the Van Stadens Estuary mixotrophic microphytoplankton became an important fraction of the water column together with phototrophic dinoflagellates and cryptophytes. In the Maitland large sized chlorophytes were the dominant taxa in late spring and summer seasons and made up more than 80 percent of the cell numbers. In the Maitland before the floods in 2002 cyanophytes were the dominant group in late spring contributing more than 75 percent in cell abundance. Data from the short-term study in the Van Stadens Estuary showed similarities and differences in the Chl a response to increased river inflow. High river inflow initially reduced Chl a biomass followed by a recovery period of a couple of days compared to a 8 – 10 week recovery period in studies monitored over seasonal and annual temporal scales. The responses may be dissimilar but help to illustrate that there are similar response patterns to environmental forcing necessary to support phytoplankton biomass at different temporal scales. This study has demonstrated that flooding events caused by strong river flow cause breaching of the mouth, a reduction in salinity and marked nutrient input. Although the causes of flooding can be similar in both estuaries the resultant effects are varied and can alter the ability of the estuary to retain water. This study was able to demonstrate that the supply of macronutrients from the catchment was strongly correlated with rainfall (R2 = 0.67) and that phytoplankton growth mainly depended on an allochthonous source of macronutrients although internal supplies could be critical at times in controlling microalgal biomass.
|
15 |
The Use of Similarity Indicies to Assess the Spatial Differences of the Phytoplankton Communities in Lake Ray Roberts, TexasBanks, Kenneth E. (Kenneth Edward) 08 1900 (has links)
A study of the phytoplankton communities of Lake Ray Roberts was conducted at three sampling sites on two sampling dates during the summer of 1995, assessing both community structure and chlorophyll a concentrations. Eight similarity indices were then used to characterize and compare the communities of these sites. Both community similarity and chlorophyll a concentrations were evaluated using a minimum detectable difference equation to determine the amount of change that must occur in these parameters in order to be deemed statistically significant. The Bray-Curtis Index was shown to be the most adequate index evaluated, and was subsequently used in conjunction with bootstrap analysis to determine the similarity between the three sampling sites.
|
16 |
Physical influences on phytoplankton ecology : models and observationsClayton, Sophie A January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 143-154). / The physical environment in the oceans dictates not only how phytoplankton cells are dispersed and their populations intermingled, but also mediates the supply of nutrients to the surface mixed layer. In this thesis I explore both of these aspects of the interaction between phytoplankton ecology and ocean physics, and have approached this topic in two distinct but complementary ways, working with a global ocean ecosystem model, and collecting data at sea. In the first half of the thesis, I examine the role of mesoscale physical features in shaping phytoplankton community structure and influencing rates of primary production. I compare the output of a complex marine ecosystem model coupled to coarse resolution and eddy-permitting physical models. Explicitly resolving eddies resulted in marked regional variations in primary production, zooplankton and phytoplankton biomass. The same phytoplankton phenotypes persisted in both cases, and were dominant in the same regions. Global phytoplankton diversity was unchanged. However, levels of local phytoplankton diversity were markedly different, with a large increase in local diversity in the higher resolution model. Increased diversity could be attributed to a combination of enhanced dispersal, environmental variability and nutrient supply in the higher resolution model. Diversity "hotspots" associated with western boundary currents and coastal upwelling zones are sustained through a combination of all of these factors. In the second half of the thesis I describe the results of a fine scale ecological and biogeochemical survey of the Kuroshio Extension Front. I found fine scale patterns in physical, chemical and biological properties that can be linked back to both the large scale horizontal and smaller scale vertical physical dynamics of the study region. A targeted genomic analysis of samples focused on the ecology of the picoeukaryote Ostreococcus clade distributions strongly supports the model derived hypotheses about the mechanisms supporting diversity hotspots. Strikingly, two distinct clades of Ostreococcus co-occur in more than half of the samples. A "hotspot" of Ostreococcus diversity appears to be supported by a confluence of water masses containing either clade, as well as a local nutrient supply at the front and the mesoscale variability of the region. / by Sophie Anne Clayton. / Ph.D.
|
17 |
Dynamic behavior of phytoplankton populations far from steady state : chemostat experiments and mathematical modelingMassie, Thomas Michael January 2011 (has links)
Nature changes continuously and is only seemingly at equilibrium. Environmental parameters like temperature, humidity or insolation may strongly fluctuate on scales ranging from seconds to millions of years. Being part of an ecosystem, species have to cope with these environmental changes. For ecologists, it is of special interest how individual responses to environmental changes affect the dynamics of an entire population – and, if this behavior is predictable. In this context, the demographic structure of a population plays a decisive role since it originates from processes of growth and mortality. These processes are fundamentally influenced by the environment. But, how exactly does the environment influence the behavior of populations? And what does the transient behavior look like?
As a result from environmental influences on demography, so called cohorts form. They are age or size classes that are disproportionally represented in the demographic distribution of a population. For instance, if most old and young individuals die due to a cold spell, the population finally consists of mainly middle-aged individuals. Hence, the population got synchronized. Such a population tends to show regular fluctuations in numbers (denoted as oscillations) since the alternating phases of individual growth and population growth (due to reproduction) are now performed synchronously by the majority of the population.That is, one time the population growths, and the other time it declines due to mortality. Synchronous behavior is one of the most pervasive phenomena in nature. Gravitational synchrony in the solar system; fireflies flashing in unison; coordinate firing of pacemaker cells in the heart; electrons in a superconductor marching in lockstep. Whatever scale one looks at, in animate as well as inanimate systems, one is likely to encounter synchrony. In experiments with phytoplankton populations, I could show that this principle of synchrony (as used by physicists) could well-explain the oscillations observed in the experiments, too. The size of the fluctuations depended on the strength by which environmental parameters changed as well as on the demographic state of a population prior to this change. That is, two population living in different habitats can be equally influenced by an environmental change, however, the resulting population dynamics may be significantly different when both populations differed in their demographic state before. Moreover, specific mechanisms relevant for the dynamic behavior of populations, appear only when the environmental conditions change.
In my experiments, the population density declined by 50% after ressource supply was doubled. This counter-intuitive behavior can be explained by increasing ressource consumption. The phytoplankton cells grew larger and enhanced their individual constitution. But at the same time, reproduction was delayed and the population density declined due to the losses by mortality.
Environmental influences can also synchronize two or more populations over large distances, which is denoted as Moran effect. Assume two populations living on two distant islands. Although there is no exchange of individuals between them, both populations show a high similarity when comparing their time series. This is because the globally acting climate synchronizes the regionally acting weather on both island. Since the weather fluctuations influence the population dynamics, the Moran effect states that the synchrony between the environment equals the one between the populations. My experiments support this theory and also explain deviations arising when accounting for differences in the populations and the habitats they are living in. Moreover, model simulations and experiments astonishingly show that the synchrony between the populations can be higher than between the environment, when accounting for differences in the environmental fluctuations (“noise color”). / Die Natur unterliegt ständigen Veränderungen und befindet sich nur vermeintlich in einem Gleichgewicht. Umweltparameter wie Temperatur, Luftfeuchtigkeit oder Sonneneinstrahlung schwanken auf einer Zeitskala von Sekunden bis Jahrmillionen und beinhalten teils beträchtliche Unterschiede. Mit diesen Umweltveränderungen müssen sich Arten als Teil eines Ökosystems auseinandersetzen. Für Ökologen ist interessant, wie sich individuelle Reaktionen auf die Umweltveränderungen im dynamischen Verhalten einer ganzen Population bemerkbar machen und ob deren Verhalten vorhersagbar ist. Der Demografie einer Population kommt hierbei eine entscheidende Rolle zu, da sie das Resultat von Wachstums- und Sterbeprozessen darstellt. Eben jene Prozesse werden von der Umwelt maßgeblich beeinflusst. Doch wie genau beeinflussen Umweltveränderungen das Verhalten ganzer Populationen? Wie sieht das vorübergehende, transiente Verhalten aus?
Als Resultat von Umwelteinflüssen bilden sich in Populationen sogenannte Kohorten, hinsichtlich der Zahl an Individuen überproportional stark vertretene Alters- oder Größenklassen. Sterben z.B. aufgrund eines außergewöhnlich harten Winters, die alten und jungen Individuen einer Population, so besteht diese anschließend hauptsächlich aus Individuen mittleren Alters. Sie wurde sozusagen synchronisiert. Eine solche Populationen neigt zu regelmäßigen Schwankungen (Oszillationen) in ihrer Dichte, da die sich abwechselnden Phasen der individuellen Entwicklung und der Reproduktion nun von einem Großteil der Individuen synchron durchschritten werden. D.h., mal wächst die Population und mal nimmt sie entsprechend der Sterblichkeit ab. In Experimenten mit Phytoplankton-Populationen konnte ich zeigen, dass dieses oszillierende Verhalten mit dem in der Physik gebräuchlichen
Konzept der Synchronisation beschrieben werden kann. Synchrones Verhalten ist eines der verbreitetsten Phänomene in der Natur und kann z.B. in synchron schwingenden Brücken, als auch bei der Erzeugung von Lasern oder in Form von rhythmischem Applaus auf einem Konzert beobachtet werden. Wie stark die Schwankungen sind, hängt dabei sowohl von der Stärke der Umweltveränderung als auch vom demografischen Zustand der Population vor der Veränderung ab. Zwei Populationen, die sich in verschiedenen Habitaten aufhalten, können zwar gleich stark von einer Umweltveränderung beeinflusst werden. Die Reaktionen im anschließenden Verhalten können jedoch äußerst unterschiedlich ausfallen, wenn sich die Populationen zuvor in stark unterschiedlichen demografischen Zuständen befanden. Darüber hinaus treten bestimmte, für das Verhalten einer Population relevante Mechanismen überhaupt erst in Erscheinung, wenn sich die Umweltbedingungen ändern. So fiel in Experimenten beispielsweise die Populationsdichte um rund 50 Prozent ab nachdem sich die Ressourcenverfügbarkeit verdoppelte. Der Grund für dieses gegenintuitive Verhalten konnte mit der erhöhten Aufnahme von Ressourcen erklärt werden. Damit verbessert eine Algenzelle zwar die eigene Konstitution, jedoch verzögert sich dadurch die auch die Reproduktion und die Populationsdichte nimmt gemäß ihrer Verluste bzw. Sterblichkeit ab.
Zwei oder mehr räumlich getrennte Populationen können darüber hinaus durch Umwelteinflüsse synchronisiert werden. Dies wird als Moran-Effekt bezeichnet. Angenommen auf zwei weit voneinander entfernten Inseln lebt jeweils eine Population. Zwischen beiden findet kein Austausch statt – und doch zeigt sich beim Vergleich ihrer Zeitreihen eine große Ähnlichkeit. Das überregionale Klima synchronisiert hierbei die lokalen Umwelteinflüsse. Diese wiederum bestimmen das Verhalten der jeweiligen Population. Der Moran-Effekt besagt nun, dass die Ähnlichkeit zwischen den Populationen jener zwischen den Umwelteinflüssen entspricht, oder geringer ist. Meine Ergebnisse bestätigen dies und zeigen darüber hinaus, dass sich die Populationen sogar ähnlicher sein können als die Umwelteinflüsse, wenn man von unterschiedlich stark schwankenden Einflüssen ausgeht.
|
18 |
Dynamics of phytoplankton in relation to tuna fish farms in Boston Bay and near-shore Spencer Gulf, South AustraliaPaxinos, Rosemary, January 2007 (has links)
Thesis (Ph.D.)--Flinders University, School of Biological Sciences. / Typescript bound. Includes bibliographical references: (leaves 149-166) Also available online.
|
19 |
A method to estimate chlorophyll-a concentration in the surface layer of a stratified lake from surface layer temperature time series, meteorogical fluxes, a knowledgeof blue-to-red peak absorption ratio and dissolved organic matter concentration /Adiyanti, Sri. January 2008 (has links)
Thesis (Ph.D.)--University of Western Australia, 2008.
|
20 |
Using airborne hyperspectral imagery to estimate chlorophyll a and phycocyanin in three central Indiana mesotrophic to eutrophic reservoirs /Sengpiel, Rebecca Elizabeth. January 2007 (has links)
Thesis (M.S.)--Indiana University, 2007. / Title from screen (viewed on August 8, 2007) Includes vita. Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI) Includes bibliographical references (leaves 145-149)
|
Page generated in 0.1287 seconds