• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 9
  • 5
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 17
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Obtenção e caracterização microestrutural e elétrica de cerâmicas PZT-PMN

Droescher, Roberta Elisabeth January 2009 (has links)
Este trabalho investigou o sistema (1 - x )PZT - x PMN, avaliando a influência da composição química e dos parâmetros de sinterização na microestrutura e propriedades elétricas dos corpos cerâmicos obtidos pelo método convencional de mistura de óxidos. Os óxidos usados foram o Nb2O5, ZrO2, TiO2, PbO e MgCO3, cominuídos e homogeneizados em moinho de bolas, por 3 horas. Para o 0,65PZT - 0,35PMN, utilizou-se 28,58% de Nb2O5, 38,93% de ZrO2, 23,29% de TiO2 e 9,2% de MgCO3; para o 0,75PZT-0,25PMN, utilizou-se 20,9% de Nb2O5, 45,34% de ZrO2, 27,13% de TiO2 e 6,62% de MgCO3 e para o 0,85PZT-0,15PMN, usa-se 12,71% de Nb2O5, 52,09% de ZrO2, 31,16% de TiO2 e 4,04% de MgCO3. O pó obtido foi submetido a calcinação a 1200°C por 4 h e, então, acrescentado PbO com um excesso de 2% em massa.à mistura, a qual foi submetida a uma nova calcinação a 800°C durante 2 horas. O pó resultante da calcinação foi conformado por prensagem, utilizando uma prensa uniaxial a 190 MPa, na forma de discos medindo 10 mm de diâmetro e 1,5 mm de espessura. A curva de queima dos corpos cerâmicos consistiu em um novo patamar a 500°C por 4h (e/ou a 800°C por 2h) e outro consecutivo a 1200°C por 4h. As amostras foram caracterizadas pela sua densidade e porosidade aparente (método de Arquimedes), composição de fases (por difração de raio-X), Microscopia Eletrônica de Varredura (MEV) e caracterização elétrica (constante dielétrica e capacitância). Os corpos cerâmicos correspondentes à composição 0,75PZT-0,25PMN alcançaram a maior densidade (7,09 ± 0,18 g/cm³) quando calcinados sucessivamente a 500°C e a 800°C, com os maiores valores de capacitância (210 pF a 200 KHz) e de constante dielétrica (1000 na frequência de 1 KHz), com menor evidência de formação de pirocloro e maior de perovskita. Os valores de constante dielétrica encontrados estão dentro do esperado para materiais cerâmicos piezoelétricos do tipo PZT - PMN, aproximadamente 1000 para freqüências de 1KHz. / This work investigated the system (1 - x )PZT - x PMN, evaluating the influence of the chemical composition and the sintering parameters on the microstructure and the electric properties of ceramic bodies obtained by the conventional method of mixture of oxides. The used oxides were Nb2O5, ZrO2, TiO2, PbO e MgCO3, squeezed and homogenized in mill of balls, for 3 hours. For the 0.65PZT-0.35PMN, it was used 28.58% of Nb2O5, 38.93% of ZrO2, 23.29% of TiO2 and 9.2% of MgCO3; for the 0.75PZT-0.25PMN, it was used 20.9% of Nb2O5, 45.34% of ZrO2, 27.13% of TiO2 and 6.62% of MgCO3 and for the 0.85PZT-0.15PMN, it is used 12.71% of Nb2O5, 52.09% of ZrO2, 31.16% of TiO2 and 4.04% of MgCO3. The obtained powder was submitted the calcination for 1200°C for 4 h and, then, increased PbO with an excess of 2% in mass, which was submitted to a new calcination to 800°C for 2 hours. The calcinated powder was conformed by pressing, using a uniaxial press to 190 MPa, in the form of disks measuring a diameter of 10mm and 1.5 mm of thickness. The curve of the burning of the ceramic bodies consisted in a new calcination to 500°C for 4h (and/or to 800°C for 2h) and other consecutive to 1200°C for 4h. The samples were characterized by density and apparent porosity (Method of Arquimedes), composition of phases (by X - rays diffraction), Scanning Electric Microstructure (SEM) and electrical properties characterization (dielectric constant and capacitance). The ceramic bodies corresponding to the composition 0.75PZT-0.25PMN reached the largest density (7.09 ± 0.18 g/cm³) when calcined successively to 500°C and 800°C, with the largest values of capacitance (210 pF to 200 KHz) and dielectric constant (1000 in the frequency of 1 KHz), with smaller evidence of pyrochlore formation and larger of perovskte. The values of dielectric constant found are inside of the expected for the piezoelectric ceramics of the type PZT- PMN, approximately 1000 by frequencies of 1KHz.
22

Obtenção e caracterização microestrutural e elétrica de cerâmicas PZT-PMN

Droescher, Roberta Elisabeth January 2009 (has links)
Este trabalho investigou o sistema (1 - x )PZT - x PMN, avaliando a influência da composição química e dos parâmetros de sinterização na microestrutura e propriedades elétricas dos corpos cerâmicos obtidos pelo método convencional de mistura de óxidos. Os óxidos usados foram o Nb2O5, ZrO2, TiO2, PbO e MgCO3, cominuídos e homogeneizados em moinho de bolas, por 3 horas. Para o 0,65PZT - 0,35PMN, utilizou-se 28,58% de Nb2O5, 38,93% de ZrO2, 23,29% de TiO2 e 9,2% de MgCO3; para o 0,75PZT-0,25PMN, utilizou-se 20,9% de Nb2O5, 45,34% de ZrO2, 27,13% de TiO2 e 6,62% de MgCO3 e para o 0,85PZT-0,15PMN, usa-se 12,71% de Nb2O5, 52,09% de ZrO2, 31,16% de TiO2 e 4,04% de MgCO3. O pó obtido foi submetido a calcinação a 1200°C por 4 h e, então, acrescentado PbO com um excesso de 2% em massa.à mistura, a qual foi submetida a uma nova calcinação a 800°C durante 2 horas. O pó resultante da calcinação foi conformado por prensagem, utilizando uma prensa uniaxial a 190 MPa, na forma de discos medindo 10 mm de diâmetro e 1,5 mm de espessura. A curva de queima dos corpos cerâmicos consistiu em um novo patamar a 500°C por 4h (e/ou a 800°C por 2h) e outro consecutivo a 1200°C por 4h. As amostras foram caracterizadas pela sua densidade e porosidade aparente (método de Arquimedes), composição de fases (por difração de raio-X), Microscopia Eletrônica de Varredura (MEV) e caracterização elétrica (constante dielétrica e capacitância). Os corpos cerâmicos correspondentes à composição 0,75PZT-0,25PMN alcançaram a maior densidade (7,09 ± 0,18 g/cm³) quando calcinados sucessivamente a 500°C e a 800°C, com os maiores valores de capacitância (210 pF a 200 KHz) e de constante dielétrica (1000 na frequência de 1 KHz), com menor evidência de formação de pirocloro e maior de perovskita. Os valores de constante dielétrica encontrados estão dentro do esperado para materiais cerâmicos piezoelétricos do tipo PZT - PMN, aproximadamente 1000 para freqüências de 1KHz. / This work investigated the system (1 - x )PZT - x PMN, evaluating the influence of the chemical composition and the sintering parameters on the microstructure and the electric properties of ceramic bodies obtained by the conventional method of mixture of oxides. The used oxides were Nb2O5, ZrO2, TiO2, PbO e MgCO3, squeezed and homogenized in mill of balls, for 3 hours. For the 0.65PZT-0.35PMN, it was used 28.58% of Nb2O5, 38.93% of ZrO2, 23.29% of TiO2 and 9.2% of MgCO3; for the 0.75PZT-0.25PMN, it was used 20.9% of Nb2O5, 45.34% of ZrO2, 27.13% of TiO2 and 6.62% of MgCO3 and for the 0.85PZT-0.15PMN, it is used 12.71% of Nb2O5, 52.09% of ZrO2, 31.16% of TiO2 and 4.04% of MgCO3. The obtained powder was submitted the calcination for 1200°C for 4 h and, then, increased PbO with an excess of 2% in mass, which was submitted to a new calcination to 800°C for 2 hours. The calcinated powder was conformed by pressing, using a uniaxial press to 190 MPa, in the form of disks measuring a diameter of 10mm and 1.5 mm of thickness. The curve of the burning of the ceramic bodies consisted in a new calcination to 500°C for 4h (and/or to 800°C for 2h) and other consecutive to 1200°C for 4h. The samples were characterized by density and apparent porosity (Method of Arquimedes), composition of phases (by X - rays diffraction), Scanning Electric Microstructure (SEM) and electrical properties characterization (dielectric constant and capacitance). The ceramic bodies corresponding to the composition 0.75PZT-0.25PMN reached the largest density (7.09 ± 0.18 g/cm³) when calcined successively to 500°C and 800°C, with the largest values of capacitance (210 pF to 200 KHz) and dielectric constant (1000 in the frequency of 1 KHz), with smaller evidence of pyrochlore formation and larger of perovskte. The values of dielectric constant found are inside of the expected for the piezoelectric ceramics of the type PZT- PMN, approximately 1000 by frequencies of 1KHz.
23

Driving techniques for high power PZT transducer arrays

Smith, Tarren MJ January 2006 (has links)
Thesis Presented for the Degree of Magister Technologiae in the Department of Electrical Engineering Cape Peninsula University of Technology 2006 / Because of the nature of piezoelectric ceramics and the physical construction pf high power piezoelectric transducers, such devices are inherently non-linear and become unpredictable when driven at high power. To drive an ultrasonic transducer or an array thereof efficiently, specific resonant points are used. These poin~s are characterised by the devices' mechanical modes of oscillation. At high electrical power levels, the resonance points of PZT transducers vary. The movement of the resonances points in the frequency domain, coupled with the transducers high Q, is severe enough to seriously hamper the devices' efficiency. The problem is specifically apparent when multiple transducer arrays are driven at power. The electrical fluctuations and interactions of the characteristics of separate transducers cause arrays to be driven efficiently at a single resonance point. To efficiently drive an array of PZT transducers it is necessary to employ a .suitable technique. Although several methods exist in the literature, each is designed for a specific configuration of transducers and dedicated matching circuitry. The fundamental flaw in most methods is that they are conceived with the assumption all PZT transducers are identical and can be driven as such. Inherent nonlinearities caused by poling and construction methods, result in each transducer to be slightly different causing a superposition of resonance frequencies for each transducer array. Existing methods cannot be used to efficiently drive generic transducer arrays and a novel approach has been adopted to accommodate transducer nonlinearities. This novel approach can be described as a culmination of two driving techniques and has been named, Swept Frequency Dwelling (SFD). This thesis examines five different driving techniques and quantifies their effectiveness by means of experimental evaluation proficiencies. The driving techniques are grouped into two categories - straight driving techniques and frequency sweeping techniques - which are compared and evaluated. In conclusion, a novel method for driving ultrasonic transducer arrays was established with the aim of eliminating some detrimental effects of other driving techniques, while exploiting some of their positive attributes and was found to be effective.
24

Pb(Yb½Nb½)O₃-PbTiO₃ : a model solid solution for the study of the different polar orders / Pb(Yb½Nb½)O₃-PbTiO₃ : une solution solide modèle pour l'étude des différents ordres polaires

Cochard, Charlotte 16 April 2015 (has links)
Les matériaux piézoélectriques ont été étudiés en détails du fait de la versatilité des applications industrielles possibles (accéléromètres, gyroscopes ou transducteurs). Les bonnes propriétés piézoélectriques (d33=510pC/N) de Pb(Yb½Nb½)O₃-PbTiO₃ (PYN-PT) et sa haute température de Curie (~370°C à la MPB). Cette solution solide entre une double pérovskite (ordonné sur le site B) et le titanate de plomb est remarquable, du fait qu'elle présente tous les ordres polaires à température ambiante: antiferroélectricité, ferroélectricité et des propriétés relaxeurs.Dans le cadre de ce travail de thèse, je présente les résultats obtenus sur des céramiques de PYN-PT de diverses compositions à travers le diagramme de phase. A partir des mesures de diffractions de rayons X et de diffusion neutronique, de spectroscopie diélectrique ainsi que des mesures piézoélectriques et ferroélectriques, un nouveau diagramme de phase sera proposé.Cette étude minutieuse du diagramme de phase a montré que celui-ci est plus compliqué que ce que laissait apparaître la littérature. En particulier, la structure de l'antiferroélectrique PYN est particulière en comparaison des autres pérovskites antiferroélectriques au plomb. En effet, dans PYN, les atomes de plomb sont déplacé suivant la direction du vecteur de modulation et les cations B sont en dehors de leurs positions prototypiques et participe à l'ordre antipolaire observé.De plus, la zone morphotropique (x _0.50) s'étale sur une zone en compositions beaucoup plus grande que ce qui a été observé dans d'autres solutions solides à base de plomb. Dans la zone pauvre en PT de la zone morphtropique, l'absence de phase rhomboédrique (attendue par analogie avec les autres systèmes au plomb) a été démontré.D'autre part, parmi les compositions présentant des propriétés relaxeurs, des différences sont apparues et il est proposé que, dans la solution solide PYN-PT, plusieurs types de relaxeurs existent.Finalement, je propose un modèle expliquant continument le changement d'ordre polaire dans le diagramme de phase. Ce modèle est basée sur la corrélation des déplacements de plomb induite par la nature chimique et l'arrangement cationique du site B. / Piezoelectricity has attracted a considerable amount of work due to the variety of possible applications such as accelerometers, gyroscopes or transducers. Pb(Yb½Nb½)O₃-PbTiO₃ is long known to have large piezoelectric properties (d33=510pC/N) and a relatively high Curie temperature (_370°C at the MPB).This solid solution between a double (B-site ordered) perovskite (Pb2YbNbO6) and lead titanate is remarkable, in the sense that it presents all polar orders. Indeed, depending on the composition, the solid solution can exhibit at room temperature: antiferroelectric, classical ferroelectric or relaxor properties. In this work, I will present results obtained on PYN-PT ceramics of various compositions spanning the phase diagram. From experiments using X-ray diffraction and neutron scattering, dielectric spectroscopy, as well as piezoelectric and ferroelectric measurements as a function of temperature, a new phase diagram is proposed. This thorough study of the phase diagram of PYN-PT has revealed a more complex phase diagram than what was reported in the literature. In particular, the structure of the antiferroelectric PYN is peculiar compared to the other Pb-based antiferroelectric. Indeed, in PYN, the Pb atoms are displaced along the direction of the modulation vector and that the B cations are not in their prototypic positions and take part in the antipolar order observed.Moreover, the morphtropic phase boundary (x _0.50) extends over a larger compositional range than what was observed in other Pb-based solid solution. In the PT-poor side of the morphtropic phase boundary, the absence of the expected rhombohedral phase (by analogy with the other Pb-based solid solutions) was demonstrated. Furthermore, among the compositions presenting relaxor properties, differences have arisen and I suggest that several types of relaxors exist, in the PYN-PT solid solution. Finally, I will propose a model explaining continuously the change of polar order through out the phase diagram. This model is based on the correlation of Pb displacements induced by the chemical nature and the cationic arrangement on the B site.
25

Obtenção e caracterização microestrutural e elétrica de cerâmicas PZT-PMN

Droescher, Roberta Elisabeth January 2009 (has links)
Este trabalho investigou o sistema (1 - x )PZT - x PMN, avaliando a influência da composição química e dos parâmetros de sinterização na microestrutura e propriedades elétricas dos corpos cerâmicos obtidos pelo método convencional de mistura de óxidos. Os óxidos usados foram o Nb2O5, ZrO2, TiO2, PbO e MgCO3, cominuídos e homogeneizados em moinho de bolas, por 3 horas. Para o 0,65PZT - 0,35PMN, utilizou-se 28,58% de Nb2O5, 38,93% de ZrO2, 23,29% de TiO2 e 9,2% de MgCO3; para o 0,75PZT-0,25PMN, utilizou-se 20,9% de Nb2O5, 45,34% de ZrO2, 27,13% de TiO2 e 6,62% de MgCO3 e para o 0,85PZT-0,15PMN, usa-se 12,71% de Nb2O5, 52,09% de ZrO2, 31,16% de TiO2 e 4,04% de MgCO3. O pó obtido foi submetido a calcinação a 1200°C por 4 h e, então, acrescentado PbO com um excesso de 2% em massa.à mistura, a qual foi submetida a uma nova calcinação a 800°C durante 2 horas. O pó resultante da calcinação foi conformado por prensagem, utilizando uma prensa uniaxial a 190 MPa, na forma de discos medindo 10 mm de diâmetro e 1,5 mm de espessura. A curva de queima dos corpos cerâmicos consistiu em um novo patamar a 500°C por 4h (e/ou a 800°C por 2h) e outro consecutivo a 1200°C por 4h. As amostras foram caracterizadas pela sua densidade e porosidade aparente (método de Arquimedes), composição de fases (por difração de raio-X), Microscopia Eletrônica de Varredura (MEV) e caracterização elétrica (constante dielétrica e capacitância). Os corpos cerâmicos correspondentes à composição 0,75PZT-0,25PMN alcançaram a maior densidade (7,09 ± 0,18 g/cm³) quando calcinados sucessivamente a 500°C e a 800°C, com os maiores valores de capacitância (210 pF a 200 KHz) e de constante dielétrica (1000 na frequência de 1 KHz), com menor evidência de formação de pirocloro e maior de perovskita. Os valores de constante dielétrica encontrados estão dentro do esperado para materiais cerâmicos piezoelétricos do tipo PZT - PMN, aproximadamente 1000 para freqüências de 1KHz. / This work investigated the system (1 - x )PZT - x PMN, evaluating the influence of the chemical composition and the sintering parameters on the microstructure and the electric properties of ceramic bodies obtained by the conventional method of mixture of oxides. The used oxides were Nb2O5, ZrO2, TiO2, PbO e MgCO3, squeezed and homogenized in mill of balls, for 3 hours. For the 0.65PZT-0.35PMN, it was used 28.58% of Nb2O5, 38.93% of ZrO2, 23.29% of TiO2 and 9.2% of MgCO3; for the 0.75PZT-0.25PMN, it was used 20.9% of Nb2O5, 45.34% of ZrO2, 27.13% of TiO2 and 6.62% of MgCO3 and for the 0.85PZT-0.15PMN, it is used 12.71% of Nb2O5, 52.09% of ZrO2, 31.16% of TiO2 and 4.04% of MgCO3. The obtained powder was submitted the calcination for 1200°C for 4 h and, then, increased PbO with an excess of 2% in mass, which was submitted to a new calcination to 800°C for 2 hours. The calcinated powder was conformed by pressing, using a uniaxial press to 190 MPa, in the form of disks measuring a diameter of 10mm and 1.5 mm of thickness. The curve of the burning of the ceramic bodies consisted in a new calcination to 500°C for 4h (and/or to 800°C for 2h) and other consecutive to 1200°C for 4h. The samples were characterized by density and apparent porosity (Method of Arquimedes), composition of phases (by X - rays diffraction), Scanning Electric Microstructure (SEM) and electrical properties characterization (dielectric constant and capacitance). The ceramic bodies corresponding to the composition 0.75PZT-0.25PMN reached the largest density (7.09 ± 0.18 g/cm³) when calcined successively to 500°C and 800°C, with the largest values of capacitance (210 pF to 200 KHz) and dielectric constant (1000 in the frequency of 1 KHz), with smaller evidence of pyrochlore formation and larger of perovskte. The values of dielectric constant found are inside of the expected for the piezoelectric ceramics of the type PZT- PMN, approximately 1000 by frequencies of 1KHz.
26

Induced strain of actuation of surface bonded and embedded piezoceramic patches

Mollenhauer, David Hilton 21 July 2009 (has links)
The strain induced into isotropic flat plates by surface bonded and embedded piezoceramic patches was investigated. The free piezoceramic patch voltage/strain response was characterized using moire interferometry and Twyman-Green interferometry techniques. Moire interferometry experiments were conducted to investigate the induced strain of actuation in a flat plate with two surface bonded piezoceramic patches and a flat plate with one embedded patch. Three-dimensional finite element models of these two specimens were constructed and analyzed. The measured in-plane voltage/strain response of a free piezoceramic patch was found to be nearly linear and of a much higher magnitude than the published data. Similarly, the out-of-plane voltage/strain response was found to be much higher in magnitude than the published data as well as being non-linear. Correlation between the moire experiment concerning the surface bonded patch specimen and the corresponding finite element model was good, indicating the validity of the modeling technique. Possible depoling damage of the embedded patch caused the correlation between the experiment and analysis of this specimen to be poor. Both finite element models predicted stresses that are not statically significant but may represent problems over many loading cycles. / Master of Science
27

Impedance matching circuit for piezoelectric transducers.

Polk, Eliot Michael January 1978 (has links)
Thesis. 1978. M.S.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 67-68. / M.S.
28

Phase switching behaviour in lead-free Na0.5Bi0.5TiO3-based ceramics

Wang, Ge January 2017 (has links)
This PhD project is focused on three lead-free ferroelectric solid solutions, which are specifically Na0.5Bi0.5TiO3-KNbO3(NBT-KN), Na0.5Bi0.5TiO3-NaNbO3(NBT-NN) and Na0.5Bi0.5TiO3-BaTiO3(NBT-BT), to evaluate the effects of composition, electric field and temperature on structural and electrical properties. Novel observations of both reversible and irreversible electric field-induced phase switching were made in both NBT-KN and NBT-NN ceramics. The NBT-KN solid solution is the primary focus of this thesis. All compositions were observed to be cubic in the as-sintered, unpoled state. However, a well-defined ferroelectric hysteresis P-E loop was obtained for compositions with low KN contents, indicating that an irreversible phase transition from a weak-polar relaxor ferroelectric (RF) to a long-range ordered metastable ferroelectric (FE) state had occurred during the measurement procedure. Both the unpoled and poled ceramic powders were examined using high resolution synchrotron XRD. For the poled state, a rhombohedral R3c structure was identified for compositions with low KN content, confirming the occurrence of the irreversible electric field-induced structural transformation from cubic to rhombohedral. In contrast, a cubic structure was retained for high KN contents, giving rise to reversible phase switching evidenced by constricted P-E hysteresis loops. Similar behaviour was observed for NBT-NN system. An 'in-situ' electric field poling experiment was conducted using high energy synchrotron XRD. In certain NBT-KN compositions the structural transformation, from cubic to mixed phase cubic+rhombohedral and finally single phase rhombohedral, occurred progressively with increasing cycles of a bipolar electric field. Similar behaviour was observed for NBT-NN compositions having low NN contents. Furthermore, the distributions of domain orientation and lattice strain over a range of orientations relative to the poling direction were determined for NBT-KN, NBT-NN and NBT-BT ceramics exhibiting the rhombohedral phase. By combining the structural information with the results of dielectric and ferroelectric measurements, a phase diagram was constructed to illustrate the influence of temperature and composition on the stability of the metastable ferroelectric and relaxor ferroelectric states for the NBT-KN system. Furthermore, the phase transition temperatures obtained from dielectric measurements were correlated with the ferroelectric and thermal depolarisation characteristics for each of the NBT-KN, NBT-NN and NBT-BT systems.
29

Estudos de cerâmicas piezoelétricas pelo método de Rietveld com dados de difração de raios-x / X-ray diffraction study of piezoelectric ceramics using Rietveld method

Santos, Carlos de Oliveira Paiva 15 March 1990 (has links)
O método de Rietveld (MR) de refinamento de estruturas de amostras policristalinas, com dados de difração de raios X foi implantado. Foram realizados testes com amostras de NaCl, NaCl:KCl (1:1 em massa) e PbTiO3. Nos testes com NaCl, foram refinados a escala e os parâmetros de rede, vibrações térmicas e perfil com várias funções para o ajuste do perfil e &#916 2 &#952 = 0.01, 0.02 e 0.04&#176. A análise quantitativa com as amostras de NaCl:KCl (1:1 em massa) preparadas para esse fim mostraram que o MR fornece bons resultados. Foi observado que a proporção de NaCl aumentou ligeiramente com a relação à de KCl em cada conjunto de dados sucessivamente medido. Nos testes com PbTiO3, os resultados mostraram uma boa concordância com os resultados obtidos com difração de nêutrons. A seguir, o método foi aplicado no estudo das cerâmicas piezoelétricas (Pb1-3/2yLay)TiO3 (PLT) e Pb(Zr1-xTix)O3 (PZT). Para o PLT o MR foi aplicado para a determinação precisa do deslocamento dos cátions relativamente ao centro dos respectivos poliedros de coordenação (CQPb para o Pb/La e CQTi para o Ti) tendo sido encontrado: Pb/La - CQPb = 0.68(2)&#197 (y=0.025), 0.43(2)&#197 (y=0.10), 0.25(2)&#197 (y=0.20) e Ti - CQTi = 0.66(2)&#197 (y=0.025), 0.36(4)&#197 (y=0.10) e 0.18(7)&#197 (y= 0.20). No caso do PZT duas amostras foram estudadas. Com a primeira, preparada pela técnica de co-precipitação, o MR foi aplicado para a determinação da fórmula química, tendo sido encontrado PbZr0.30Ti0.70O3. Com a segunda, preparada por mistura convencional de óxidos, o MR foi aplicado para a determinação da proporção das fases tetragonal e romboédrica coexistentes na amostra, fornecendo 79% de tetragonal e 21% de romboédrica / The Rietveld method (RM) of structura refinement of polycrystalline samples with X-ray diffraction data was implemented. Tests were performed with samples of NaCl, NaCl:KCl (1:1 in weight) and PbTiO3. for NaCl, the scale factor, lattice, thermal vibrations and profile parameters were refined with several profile functions and step lenght of 0.01, 0.02 and 0.04&#176. The quantitative alanysis test with the NaCl:KCl (1:1 in weight) sample prepared for this purpose, showed that the RM gives good results. It was observed that the relative proportion of NaCl had a slight increase for each successive data collection. In the tests with PbTiO3, the results showed good agreement with that of nêutron diffraction. The method was applied in the analysis of the piezoelectrics ceramics (Pb1-3/2yLay)TiO3 (PLT) and Pb(Zr1-xTix)O3 (PZT). In the PLT cases the RM was applied for the precise determination of the cátions shifts from their coordination polyedra centre (CQPb for Pb/La and CQTi for Ti) and it was found that Pb/La - CQPb = 0.68(2)&#197 (y=0.025), 0.43(2)&#197 (y=0.10), 0.25(2)&#197 (y=0.20) and Ti - CQTi = 0.66(2)&#197 (y=0.025), 0.36(4)&#197 (y=0.10) and 0.18(7)&#197 (y= 0.20). For the PZT two samples were studied. With the first, prepared by co-precipitation technique, the RM was applied for the determination of the chemical formula, and it was found to be PbZr0.30Ti0.70O3. For the second, prepared by conventional technique of mixture of oxides, the RM was applied for the quantitative analysis of the coexisting phases in the sample, and it was found to be 79% tetragonal and 21% rhombohedra
30

HIGH PERFORMANCE PIEZOELECTRIC MATERIALS AND DEVICES FOR MULTILAYER LOW TEMPERATURE CO-FIRED CERAMIC BASED MICROFLUIDIC SYSTEMS

Zhang, Wenli 01 January 2011 (has links)
The incorporation of active piezoelectric elements and fluidic components into micro-electromechanical systems (MEMS) is of great interest for the development of sensors, actuators, and integrated systems used in microfluidics. Low temperature cofired ceramics (LTCC), widely used as electronic packaging materials, offer the possibility of manufacturing highly integrated microfluidic systems with complex 3-D features and various co-firable functional materials in a multilayer module. It would be desirable to integrate high performance lead zirconate titanate (PZT) based ceramics into LTCC-based MEMS using modern thick film and 3-D packaging technologies. The challenges for fabricating functional LTCC/PZT devices are: 1) formulating piezoelectric compositions which have similar sintering conditions to LTCC materials; 2) reducing elemental inter-diffusion between the LTCC package and PZT materials in co-firing process; and 3) developing active piezoelectric layers with desirable electric properties. The goal of present work was to develop low temperature fired PZT-based materials and compatible processing methods which enable integration of piezoelectric elements with LTCC materials and production of high performance integrated multilayer devices for microfluidics. First, the low temperature sintering behavior of piezoelectric ceramics in the solid solution of Pb(Zr0.53,Ti0.47)O3-Sr(K0.25, Nb0.75)O3 (PZT-SKN) with sintering aids has been investigated. 1 wt% LiBiO2 + 1 wt% CuO fluxed PZT-SKN ceramics sintered at 900oC for 1 h exhibited desirable piezoelectric and dielectric properties with a reduction of sintering temperature by 350oC. Next, the fluxed PZT-SKN tapes were successfully laminated and co-fired with LTCC materials to build the hybrid multilayer structures. HL2000/PZT-SKN multilayer ceramics co-fired at 900oC for 0.5 h exhibited the optimal properties with high field d33 piezoelectric coefficient of 356 pm/V. A potential application of the developed LTCC/PZT-SKN multilayer ceramics as a microbalance was demonstrated. The final research focus was the fabrication of an HL2000/PZT-SKN multilayer piezoelectric micropump and the characterization of pumping performance. The measured maximum flow rate and backpressure were 450 μl/min and 1.4 kPa respectively. Use of different microchannel geometries has been studied to improve the pumping performance. It is believed that the high performance multilayer piezoelectric devices implemented in this work will enable the development of highly integrated LTCC-based microfluidic systems for many future applications.

Page generated in 0.0761 seconds