Spelling suggestions: "subject:"piezoresistors"" "subject:"piezoresistores""
1 |
Estudo e aplicação das propriedades elétricas, térmicas e mecânicas de materiais amorfos piezoresistivos em transdutores de pressão. / Study and application of eletrical properties, thermal and mechanical of amorphus matherials in piezoresistive.Rasia, Luiz Antônio 25 March 2009 (has links)
Neste trabalho é apresentado o estudo teórico-experimental a respeito das propriedades piezoresistivas de dois tipos de materiais com estrutura amorfa. O primeiro material estudado é o carbono semelhante ao diamante e o segundo é o óxido de estanho dopado com índio. O estudo compreende o levantamento bibliográfico sobre os materiais, projeto teórico e prático de estruturas individuais de testes e piezoresistores configurados em ponte completa, além da realização das caracterizações elétricas, mecânicas e térmicas de acordo com um arranjo experimental proposto. As caracterizações experimentais foram implementadas usando a técnica de flexão de uma viga engastada e a teoria das pequenas deflexões. Os diferentes materiais caracterizados e analisados apresentaram o efeito piezoresistivo e um sinal de sensibilidade mecânica condizente com as características esperadas para estes filmes. Ambos os filmes respondem as variações da temperatura de forma linear e apresentam uma direção de dependência com a temperatura. Os filmes de carbono amorfo hidrogenado livre de dopantes apresentam curvas de corrente e tensão características indicando um mecânismo de condução elétrica complexo devido a sua diversidade de microestruturas e relacionado aos parâmetros de processos de deposição. Os filmes com nitrogênio são mais estáveis termicamente com coeficientes da ordem de - 4900 ppm/ºC. Os resultados encontrados indicam a existência de dois tipos de portadores de cargas responsáveis pela mobilidade média, resistividade e efeito piezoresistivo. Os filmes de óxido de estanho dopado com índio livre e com 5 % e 10 % de oxigênio no plasma apresentam características de diminuição da resistência elétrica com o esforço mecânico e exibem efeitos de piezoresistividade na faixa de - 12 a - 23. Amostras destes filmes com oxigênio apresentaram um fator de sensibilidade mecânica muito baixa e são menos estáveis termicamente que as amostras livres de oxigênio. Os filmes estudados podem ser usados em aplicações envolvendo extensiometria ou mesmo em sensores de pressão piezoresistivos após adequação do processo de deposição e de recozimentos térmicos. / This tesis presents the piezoresistivity theoretical and experimental study for two materials with amorphous structure. The first material is the Diamond Like Carbon and the other is the Indium Tin Oxide. The work includes the bibliographic study, theoretical and practical design of structures for testing individual and piezoresistors configured in bridge, in addition to the completion of the characterizations electrical, mechanical and thermal according to a proposed experimental arrangement. The experimental characterizations have been implemented using the technique of cantilever and the theory of small deflections. The different materials analyzed showed the piezoresistive effect with some order of magnitude and a sign of sensitivity to mechanical stress of tension consistent with the characteristics expected for these types of films. Both films respond to changes in temperature in a very linear and have a direction of dependency with the temperature according to the literature. The films of free doping have curves of current and voltage characteristics for this type of material indicating a mechanism of electric conduction very complex because of its diversity of microstructures and processes related to the parameters of the deposition and films with nitrogen are more thermally stable with coefficients of order of - 4900 ppm/ºC. The results indicate the existence of two types of charge carriers responsible for the average mobility and hence the resistivity and the piezoresistive effect. The films of indium tin oxide free and with some oxygen content in plasma presents characteristics of decreased electrical resistance to mechanical stress and exhibit effects of piezoresistive in the range of - 12 to - 23. Samples of these films with oxygen showed a factor of very low mechanical sensitivity and are less stables to thermal effect the samples free of oxygen. The films studied can be used in certain applications such strain gauges or even in piezoresistive pressure sensors, after adequate process of deposition and thermal annealing.
|
2 |
Fabrication, characterization, and application of multifunctional microcantilever heatersLee, Jung Chul 05 April 2007 (has links)
Thermal, electrical, and mechanical characteristics of heated cantilevers were experimentally studied in various conditions. Experiments investigated thermal, mechanical, and coupled behaviors of the heated cantilevers under DC, AC, and transient electrical heating. Raman spectroscopy measured local temperature and qualitative intrinsic stress with high spatial resolution. Based on the thorough understanding from device characterization, cantilever type micro hotplates and small array of heated cantilevers with integrated piezoresistive sensors were fabricated and characterized. Well characterized cantilever sensors were applied to heat transfer study and microfludic research. Heated microcantilevers were suggested to study sub-continuum heat transfer from a micro heater to ambient gas environment in a wide range of pressure. Microcantilever sensors were employed to study the free microjets emanated from microfabricated nozzles. Piezoresistive cantilevers measured jet thrust, velocity, and break-up distance of the liquid microjets and heated cantilevers investigated heat transfer characteristics and phase change phenomena during the microjet impingement.
|
3 |
Estudo e aplicação das propriedades elétricas, térmicas e mecânicas de materiais amorfos piezoresistivos em transdutores de pressão. / Study and application of eletrical properties, thermal and mechanical of amorphus matherials in piezoresistive.Luiz Antônio Rasia 25 March 2009 (has links)
Neste trabalho é apresentado o estudo teórico-experimental a respeito das propriedades piezoresistivas de dois tipos de materiais com estrutura amorfa. O primeiro material estudado é o carbono semelhante ao diamante e o segundo é o óxido de estanho dopado com índio. O estudo compreende o levantamento bibliográfico sobre os materiais, projeto teórico e prático de estruturas individuais de testes e piezoresistores configurados em ponte completa, além da realização das caracterizações elétricas, mecânicas e térmicas de acordo com um arranjo experimental proposto. As caracterizações experimentais foram implementadas usando a técnica de flexão de uma viga engastada e a teoria das pequenas deflexões. Os diferentes materiais caracterizados e analisados apresentaram o efeito piezoresistivo e um sinal de sensibilidade mecânica condizente com as características esperadas para estes filmes. Ambos os filmes respondem as variações da temperatura de forma linear e apresentam uma direção de dependência com a temperatura. Os filmes de carbono amorfo hidrogenado livre de dopantes apresentam curvas de corrente e tensão características indicando um mecânismo de condução elétrica complexo devido a sua diversidade de microestruturas e relacionado aos parâmetros de processos de deposição. Os filmes com nitrogênio são mais estáveis termicamente com coeficientes da ordem de - 4900 ppm/ºC. Os resultados encontrados indicam a existência de dois tipos de portadores de cargas responsáveis pela mobilidade média, resistividade e efeito piezoresistivo. Os filmes de óxido de estanho dopado com índio livre e com 5 % e 10 % de oxigênio no plasma apresentam características de diminuição da resistência elétrica com o esforço mecânico e exibem efeitos de piezoresistividade na faixa de - 12 a - 23. Amostras destes filmes com oxigênio apresentaram um fator de sensibilidade mecânica muito baixa e são menos estáveis termicamente que as amostras livres de oxigênio. Os filmes estudados podem ser usados em aplicações envolvendo extensiometria ou mesmo em sensores de pressão piezoresistivos após adequação do processo de deposição e de recozimentos térmicos. / This tesis presents the piezoresistivity theoretical and experimental study for two materials with amorphous structure. The first material is the Diamond Like Carbon and the other is the Indium Tin Oxide. The work includes the bibliographic study, theoretical and practical design of structures for testing individual and piezoresistors configured in bridge, in addition to the completion of the characterizations electrical, mechanical and thermal according to a proposed experimental arrangement. The experimental characterizations have been implemented using the technique of cantilever and the theory of small deflections. The different materials analyzed showed the piezoresistive effect with some order of magnitude and a sign of sensitivity to mechanical stress of tension consistent with the characteristics expected for these types of films. Both films respond to changes in temperature in a very linear and have a direction of dependency with the temperature according to the literature. The films of free doping have curves of current and voltage characteristics for this type of material indicating a mechanism of electric conduction very complex because of its diversity of microstructures and processes related to the parameters of the deposition and films with nitrogen are more thermally stable with coefficients of order of - 4900 ppm/ºC. The results indicate the existence of two types of charge carriers responsible for the average mobility and hence the resistivity and the piezoresistive effect. The films of indium tin oxide free and with some oxygen content in plasma presents characteristics of decreased electrical resistance to mechanical stress and exhibit effects of piezoresistive in the range of - 12 to - 23. Samples of these films with oxygen showed a factor of very low mechanical sensitivity and are less stables to thermal effect the samples free of oxygen. The films studied can be used in certain applications such strain gauges or even in piezoresistive pressure sensors, after adequate process of deposition and thermal annealing.
|
4 |
Large Enhancement in Metal Film Piezoresistive Sensitivity with Local Inhomogenization for Nanoelectromechanical SystemsMohansundaram, S M January 2013 (has links) (PDF)
High performance and low cost sensors based on microelectromechanical systems (MEMS) have become commonplace in today's world. MEMS sensors, such as accelerometers, gy- roscopes, pressure sensors, and microphones, are routinely used in consumer electronics, automobiles, industrial and aerospace applications. Basically, all these devices mea- sure tiny displacements of micromachined mechanical structures in response to external stimuli. One of the widely used techniques to detect these displacements is piezoresistive sensing. Piezoresistive sensors are popular in MEMS due to their simplicity and robustness.
Traditionally, silicon has been the material of choice for piezoresistors due to its high strain sensitivity or gauge factor. Whereas metal lm piezoresistors typically have low gauge factor that puts them out of favour when compared to silicon. But metal lm piezoresistors have several advantages compared to their semiconductor counterparts, including simple and low-cost fabrication, low resistivity and generally low noise. Low resistance sensors become desirable particularly when the devices are scaled down to nanoelectromechanical systems (NEMS), where signal-to-noise ratio (SNR) performance becomes crucial. Enhancing the gauge factor of metal lms while keeping their low resistance advantage can dramatically improve their SNR performance for NEMS.
This thesis reports a simple method we have developed to enhance the gauge factor of metal lm piezoresistors. We demonstrate this method on specially designed micro- cantilever devices. Using controlled electromigration, we are able to engineer the microstructure of gold lm and transform it into a locally inhomogeneous conductor which resembles a percolation network. This results in more than 100 times higher gauge factor at low to moderate sensor resistance. The SNR possible with our piezoresistor at high frequencies exceeds that of most available systems by at least an order of magnitude. Our locally inhomogeneous metal lm piezoresistor is a promising candidate for high-performance NEMS-based sensors of the future.
|
Page generated in 0.0627 seconds