• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 10
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 216
  • 188
  • 182
  • 51
  • 37
  • 29
  • 22
  • 19
  • 16
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Optimization of pile group foundations in non-linear soil using hybrid genetic algorithms /

Ng, Tsz Man. January 2006 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references. Also available in electronic version.
92

Mini piles design and construction in current engineering practice /

Yiu, Wai-kei, Ricky. January 2001 (has links)
Thesis (M. Sc.)--University of Hong Kong, 2001.
93

Hydraulic gradient similitude method for geotechnical modelling tests with emphasis on laterally loaded piles

Yan, Li January 1990 (has links)
A study has been undertaken to evaluate and apply the hydraulic gradient similitude method to geotechnical model testings. This method employs a high hydraulic gradient across granular soils to effectively increase self-weight stresses in the model. Testing principle and procedures are presented, and the factors affecting test results discussed. An apparatus (UBC-HGST) using this testing principle has been developed. Three applications are presented in which the hydraulic gradient similitude method is evaluated, and the existing concepts and methods of analysis for the problems studied are examined. In the footing tests, it is found that the scaling laws implied in the hydraulic gradient modelling test are satisfied, and are similar to those of the centrifuge modelling technique. Load-settlement curves are found to be similar to those in centrifuge tests. The test results illustrate the importance of the stress level in the load-settlement responses. Terzaghi's bearing capacity formula is compared with the observed bearing capacities under different stress levels. It is found that due to the stress level effects, the bearing capacity coefficient, Nγ, decreases linearly with footing width on the log-log scale which is in accordance with other model study and analytical results. In the downhole and crosshole seismic tests, results are used to evaluate the empirical equations that relate shear wave velocity and soil stresses in terms of field stress condition. It is found that although the various equations can predict the insitu shear wave velocity profile reasonably well, only the equation which is based on the significant stresses in the wave propagation and particle motion directions can predict the variation of velocity ratio between the downhole and SH crosshole tests. It is also found that the stress ratio has some effects on the downhole (or SV crosshole) tests, but not on the SH crosshole tests. This indicates that only the stress ratio in the plane of wave propagation is important to the shear wave velocity. Comparison between the downhole and SH crosshole tests shows that the structure anisotropy was about 10% in terms of shear wave velocity. Prediction of Ko values using shear wave measurement is evaluated, and its practical difficulties are addressed. In the laterally loaded pile tests, the pile response to static and cyclic loadings at various stress levels controlled by the hydraulic gradients is examined in terms of pile head response, pile bending moment and soil-pile interaction P-y curves. For the static loading, pile head response and bending moment are found to be significantly affected by the soil-pile relative stiffness, pile diameter, loading condition and pile head fixity. However, little effects of loading eccentricity and pile head fixity are found on the P-y curves. While pile diameter is found to have effects on the P-y curves at large pile deflection, its effects are negligible at small deflecton range. The effects of relative soil-pile stiffness on the P-y curves due to stress levels can be normalized by the soil modulus and pile diameter for the curves below 1 pile diameter, as computed by the plane strain finite element analysis. Two methods of generating P-y curves are suggested, and found to give satisfactory results as compared with the test data and the prediction given by API code (1987). For cyclic loading, different pile responses are observed in "one-way" as compared to "two-way" cyclic loading. The cyclic P-y curves are derived, and found to be highly nonlinear and hysteretic, and change with number of loading cycles. From these studies, it is shown that the hydraulic gradient similitude method provides a simple and inexpensive means of model testing for many geotechnical engineering problems and adds to the data base from which methods of analysis can be evaluated. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
94

Behavior of model pile groups

Evgin, Erman. January 1975 (has links)
No description available.
95

An analytical and experimental investigation of the effects of superimposed longitudinal vibration on the rate of penetration of a pile-simulating rod /

Yang, Eugene Li Chun January 1967 (has links)
No description available.
96

Termination criteria for high-capacity jacked and driven steel H-pilesin Hong Kong

Lam, Joley., 林早妮. January 2007 (has links)
published_or_final_version / abstract / Civil Engineering / Doctoral / Doctor of Philosophy
97

Effect of Wall Penetration Depth on the Behavior of Sheet Pile Walls

Amer, Hetham A. Ramadan 23 May 2013 (has links)
No description available.
98

Innovation in the design of continuous flight auger and bored displacement piles

Baxter, David January 2009 (has links)
The field of pile design and construction in the United Kingdom is currently in a period of change. Not only are new processes and techniques being developed but also the legislative landscape is changing with the introduction of new Europe wide normative standards (BSI, 2004, 2007). This project sought to optimise pile design through better understanding and interpretation of ground conditions and of the pile-soil interaction for two pile types, continuous flight auger and bored displacement piles. Quantitative methods for interpreting and summarising previous knowledge and experience have been developed; the strata are divided into discrete bands and properties are represented with summary statistics. Experience and previous knowledge relating to the shear strength of London Clay have been quantified and presented using this approach. Furthermore, a straightforward tool has been provided for the implementation of such data into design; the previous knowledge and new site specific data are combined using Bayesian updating. Through use of this technique, the uncertainty associated with interpreting ground conditions from site data has been demonstrated to be reduced. The techniques described have been adopted into design practice within the sponsoring company. Bored displacement piles are a relatively new pile type. There is little published data or scientific understanding of the processes undergone by the soils during and after construction and the effect that these have on pile performance. This research identified the need for, and developed, a unified framework of descriptors for the various types of bored displacement pile and investigated the installation energy and performance of bored displacement piles in London Clay. The energy to construct the pile was observed to be highly variable and not directly related to capacity. Performance of bored displacement piles was observed to be similar to continuous flight auger piles of similar dimensions; typical values for the adhesion between bored displacement piles and the surrounding soil were established and these were comparable to those achieved by continuous flight auger piles. In addition, to enable the analysis of the probability of failure of a pile, the sources of variation have been investigated and the variability quantified. Besides the soil conditions, the dimensions of the pile, notably pile diameter, were found to be a significant source of variation.
99

CANTILEVER SHEET PILE ANALYSIS FOR STRATIFIED COHESIVE SOIL DEPOSITS (COMPUTER PROGRAM, SPILE)

Ibarra, German A., 1959- January 1987 (has links)
No description available.
100

Water injection to assist pile jacking

Shepley, Paul January 2014 (has links)
No description available.

Page generated in 0.0827 seconds