• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the surfacing and diving behaviour and availability of long-finned pilot whales and quantifying the effects of anthropogenic sound on density and strandings of cetaceans in the northeast Atlantic

Jewell, Rebecca January 2014 (has links)
The size and trend of a population is fundamental to the assessment of its conservation status, yet cetacean abundance data are often biased and lack statistical power to detect trends. As a result, the conservation status of many species is unknown and the population-level effects of conservation pressures such as anthropogenic sound cannot be quantified. Failing to account for cetaceans that are unavailable for detection at the surface during abundance surveys will negatively bias estimates of abundance. Analysis of time-depth data revealed that pilot whale dive and surface interval durations, and availability for detection, varied with time of day, but this bias was accurately estimated using the mean dive and surface interval durations. A global analysis of cetacean density estimates compiled from multiple line-transect surveys incorporated covariates describing availability bias, and other sources of variability, to facilitate the detection of underlying temporal trends. Decadal global trends in cetacean density were detected for four species, while significant yearly ocean-scale trends were detected for six families. Exploratory analysis of data compiled from line-transect surveys found some evidence that trends in the density of minke whales and sperm whales in the northeast Atlantic varied between areas with and without seismic survey effort. However, there were insufficient data to clearly identify chronic exposure to anthropogenic sound from seismic surveys as a driver of population change. Analysis of strandings data from the UK and Ireland identified some evidence that harbour porpoise and sperm whale stranding rates were related to seismic survey effort and wind farm construction, but the results were not conclusive. Large-scale cetacean surveys provide valuable information on the density and spatial and temporal distribution of cetaceans that is vital for monitoring populations, but these surveys cannot replace dedicated studies of the population-level effects of sound on cetaceans.
2

Comparative diversity at the major histocompatibility complex in two dolphin species

Heimeier, Dorothea January 2009 (has links)
This thesis presents investigations of diversity at three genes (class I, DQA and DQB) of the Major Histocompatibility Complex (MHC) in cetaceans. The MHC genes encode for proteins that are crucial for initiating an immune response by binding invading pathogens in vertebrates. It has been acknowledged that a high diversity at these genes results in the ability to recognise a wider range of pathogens, therefore functional diversity is important for the survival of a species. Furthermore this diversity has been created under the influence of selection, which can reveal interesting contrasts with neutral markers about the history of selection of populations and species. The diversity at two genes (DQA and DQB) in natural populations of two contrasting species of cetaceans has been investigated in more detail. The species selected included both sub-species of Hector’s dolphin, the Hector’s dolphin (Cephalorhynchus hectori hectori) and the Maui’s dolphin (Cephalorhynchus hectori maui), as well as the long-finned pilot whale (Globicephala melas). These species were chosen, because both Hector’s dolphin sub-species contrast with the pilot whale species in regards to their population size, abundance, population structure and life history. For example both sub-species of Hector’s dolphin have small population sizes and only inhabit coastal areas around New Zealand, whereas the pilot whale is an abundant, pelagic dolphin species. In Chapter 2 the expression of class II MHC genes (DQA and DQB) was demonstrated for the first time for a cetacean species, the Hector’s dolphin. Using available information from the bottlenose dolphin (Tursiops truncatus), I also designed primers to investigate class I MHC. Fragments of MHC genes were amplified from cDNA, which was derived from blood samples of two Hector’s dolphins. These dolphins were the subject of a temporary live capture, presenting a unique opportunity for blood collection. No evidence was found for duplication of both MHC class II loci, but cloning suggested a minimum of three copies of class I genes within the genomic DNA. However, the expression of all class I genes was uncertain, since only one allele could be isolated from cDNA. Functionality for all three genes (class I, DQA and DQB) was supported by the evidence for balancing selection having operated on these genes, indicated by a higher ratio of non-synonymous to synonymous substitutions. In Chapter 3, a combination of single-strand conformation polymorphism (SSCP) and direct sequencing was used to describe DQA and DQB diversity in the Hector’s and Maui’s dolphin. Genetic samples for the Hector’s dolphin were available from previously collected stranding and biopsy samples (n = 233), representing three populations from the South Coast of New Zealand and the sub-species on the West Coast of the North Island of New Zealand. For the Hector’s dolphin of the South Island, a surprisingly large number of alleles at both loci (DQA = 4, DQB = 6) were found, considering their small population size and compared to other cetacean populations with larger population sizes. The Maui’s dolphin has been classified as critically endangered with less than 100 dolphins, but showed a relatively high nucleotide diversity for DQB ( = 4.5%). This diversity was based on only three alleles that have been retained in the sub-species, representing the most divergent of all six alleles. All populations showed strong geographic differentiation at both loci (DQA: FST=0.252; DQB: FST=0.333), with the greatest differentiation between the South Island population and the North Island Maui’s dolphin. Comparison to mitochondrial and microsatellite diversity suggested influence of stochastic genetic drift, although the pressure of balancing selection acting on DQB over an evolutionary time period was also evident by a higher ratio of non-synonymous to synonymous substitutions (dN/dS=5.9) and by a pattern of trans-specific allele sharing within the family of Delphinidae. In Chapter 4 similar methods were used to describe DQA and DQB in pilot whales using genetic samples from the long-finned pilot whale that were available from five mass-strandings from around New Zealand (n = 237). A larger number of alleles than for the Hector’s dolphin were found at both loci (DQA= 8; DQB= 8), although their large population size and pelagic abundance raises the expectation of an even greater number of alleles. The overall differentiation between mass-strandings was low, but significant for both loci (DQA: FST =0.012, DQB: FST =0.014). The differentiation of all strandings was greatest for the Golden Bay mass-stranding at DQA, but deviation from Hardy-Weinberg equilibrium at DQB suggested either sub-structure within mass-strandings (Wahlund effect) or the presence of null alleles. As for the Hector’s dolphin and other mammalian species, the influence of balancing selection acting on DQB over a long evolutionary time period was evident by a higher ratio non-synonymous to synonymous substitutions (dN/dS=9.3) and by a pattern of trans-specific allele sharing within the family of Delphinidae. Overall, diversity is surprisingly similar between these two cetacean species despite different life history characteristic, but low compared to domesticated ungulate species, such as the cow. If low MHC diversity is a general feature of cetaceans, due to the marine environment as suggested previously or rather a side effect of short-term demographic forces remains speculative. A standardised nomenclature for the increasing number of MHC alleles from cetacean is proposed in this thesis to assist with future development of this research.
3

Hearing and Echolocation in Stranded and Captive Odontocete Cetaceans

Greenhow, Danielle 01 January 2013 (has links)
Odontocetes use echolocation to detect, track, and discriminate their prey, as well as negotiate their environment. Their hearing abilities match the frequency of greatest sensitivity to the higher frequencies used for foraging and navigation. Hearing and echolocation together provide odontocetes with a highly developed biosonar system. This dissertation examines the hearing ability of several odontocete species to understand what signals they can perceive during echolocation. The variability in hearing ranges between species is examined in the context of phylogenetic and ecological differences among taxa. An autonomous hydrophone array is also developed that could be used in an expanded form in field deployments to study echolocation signals in a wider range of species. Methods for measuring hearing sensitivity include both psychophysical and electrophysiological procedures. Behavioral methods require a large time commitment, for both training and data collection, and can only be performed on captive dolphins. Auditory evoked potential (AEP) methods are non-invasive, rapid measurements of the brain's response to sound stimuli and allow for audiograms to be collected on stranded, high risk dolphins. By determining the hearing abilities of odontocetes either in captivity or during stranding, data can be collected about inter- and intraspecies variability, and the occurrence of hearing impairment. It can also be used as another diagnostic tool to determine the releasability of a stranded animal. A juvenile male short-finned pilot whale (Globicephala macrorhynchus) that stranded in Curacao had severe hearing impairment at all frequencies tested. Four female short-finned pilot whales tested had the best sensitivity at 40 kHz. The juveniles had greater high frequency sensitivity than the adult pilot whales. Cutoff frequencies were between 80 and 120 kHz. Hearing sensitivity was determined for the two mother/calf pairs of Risso's dolphins (Grampus griseus) before and after antibiotic treatment in order to measure any potential effects of antibiotic treatment. Greatest sensitivity occurred at 40 kHz and cutoff frequencies were around 120 kHz for all dolphins tested. Changes in hearing sensitivity after antibiotic dosage were 12 dB or less in all cases except one. The adult female Betty showed a threshold shift at 120 kHz of 54 dB from May to June, which partially demonstrates the presence of an ototoxic effect at one frequency. Dosages of antibiotics during drug treatment detailed in this study should be considered safe dosages of antibiotics for Risso's dolphins. AEP and behavioral methods were used to collect audiograms for three Stenella spp. dolphins. The frequency of best hearing for the Atlantic spotted dolphin and the spinner dolphin was 40 kHz, and their upper cutoff frequencies were above 120 kHz. The pantropical spotted dolphin had the greatest sensitivity at 10 kHz, and had severe high frequency hearing loss with a cutoff frequency between 14 and 20 kHz. Comparisons of high frequency hearing sensitivities among the species tested show two distinct groups. Short-finned pilot whales and Risso's dolphins have a cutoff frequency below 120 kHz, whereas Stenella spp. dolphins have cutoff frequencies above 120 kHz. Expanding the comparison to include other species, killer whales, pygmy killer whales, false killer whales, and long-finned pilot whales also have cutoff frequencies below 120 kHz. Common bottlenose dolphins, white-beaked dolphins, Indo-Pacific humpback dolphins, rough-toothed dolphins, and common dolphins have cutoff frequencies above 120 kHz. Genetic evidence exists for two subfamilies within Delphinidae (Vilstrup et al., 2011) and those species with cutoff frequencies below 120 kHz belong to the subfamily Globicephalinae and those species with cutoff frequencies above 120 kHz belong to the subfamily Delphininae. An autonomous, field-deployable hydrophone array was developed to measure free-swimming echolocation. The array contained 25 hydrophones, two cameras, and a synchronization unit on a PVC frame. The distinct click train was used to time-align all 25 channels, and the light was used to synchronize the video and acoustic recordings. Echolocation beam patterns were calculated and preliminary evidence shows a free-swimming dolphin utilizes head movement, beam steering and beam focusing. Among all areas of cetacean biology more research is necessary to gain a clearer picture of how odontocetes have adapted to function in their acoustic environment. The array system developed can be used to study how dolphins use echolocation in the wild, the impacts of anthropogenic sound on echolocation production, and the potential consequences of high frequency hearing loss.
4

Comparative diversity at the major histocompatibility complex in two dolphin species

Heimeier, Dorothea January 2009 (has links)
This thesis presents investigations of diversity at three genes (class I, DQA and DQB) of the Major Histocompatibility Complex (MHC) in cetaceans. The MHC genes encode for proteins that are crucial for initiating an immune response by binding invading pathogens in vertebrates. It has been acknowledged that a high diversity at these genes results in the ability to recognise a wider range of pathogens, therefore functional diversity is important for the survival of a species. Furthermore this diversity has been created under the influence of selection, which can reveal interesting contrasts with neutral markers about the history of selection of populations and species. The diversity at two genes (DQA and DQB) in natural populations of two contrasting species of cetaceans has been investigated in more detail. The species selected included both sub-species of Hector’s dolphin, the Hector’s dolphin (Cephalorhynchus hectori hectori) and the Maui’s dolphin (Cephalorhynchus hectori maui), as well as the long-finned pilot whale (Globicephala melas). These species were chosen, because both Hector’s dolphin sub-species contrast with the pilot whale species in regards to their population size, abundance, population structure and life history. For example both sub-species of Hector’s dolphin have small population sizes and only inhabit coastal areas around New Zealand, whereas the pilot whale is an abundant, pelagic dolphin species. In Chapter 2 the expression of class II MHC genes (DQA and DQB) was demonstrated for the first time for a cetacean species, the Hector’s dolphin. Using available information from the bottlenose dolphin (Tursiops truncatus), I also designed primers to investigate class I MHC. Fragments of MHC genes were amplified from cDNA, which was derived from blood samples of two Hector’s dolphins. These dolphins were the subject of a temporary live capture, presenting a unique opportunity for blood collection. No evidence was found for duplication of both MHC class II loci, but cloning suggested a minimum of three copies of class I genes within the genomic DNA. However, the expression of all class I genes was uncertain, since only one allele could be isolated from cDNA. Functionality for all three genes (class I, DQA and DQB) was supported by the evidence for balancing selection having operated on these genes, indicated by a higher ratio of non-synonymous to synonymous substitutions. In Chapter 3, a combination of single-strand conformation polymorphism (SSCP) and direct sequencing was used to describe DQA and DQB diversity in the Hector’s and Maui’s dolphin. Genetic samples for the Hector’s dolphin were available from previously collected stranding and biopsy samples (n = 233), representing three populations from the South Coast of New Zealand and the sub-species on the West Coast of the North Island of New Zealand. For the Hector’s dolphin of the South Island, a surprisingly large number of alleles at both loci (DQA = 4, DQB = 6) were found, considering their small population size and compared to other cetacean populations with larger population sizes. The Maui’s dolphin has been classified as critically endangered with less than 100 dolphins, but showed a relatively high nucleotide diversity for DQB ( = 4.5%). This diversity was based on only three alleles that have been retained in the sub-species, representing the most divergent of all six alleles. All populations showed strong geographic differentiation at both loci (DQA: FST=0.252; DQB: FST=0.333), with the greatest differentiation between the South Island population and the North Island Maui’s dolphin. Comparison to mitochondrial and microsatellite diversity suggested influence of stochastic genetic drift, although the pressure of balancing selection acting on DQB over an evolutionary time period was also evident by a higher ratio of non-synonymous to synonymous substitutions (dN/dS=5.9) and by a pattern of trans-specific allele sharing within the family of Delphinidae. In Chapter 4 similar methods were used to describe DQA and DQB in pilot whales using genetic samples from the long-finned pilot whale that were available from five mass-strandings from around New Zealand (n = 237). A larger number of alleles than for the Hector’s dolphin were found at both loci (DQA= 8; DQB= 8), although their large population size and pelagic abundance raises the expectation of an even greater number of alleles. The overall differentiation between mass-strandings was low, but significant for both loci (DQA: FST =0.012, DQB: FST =0.014). The differentiation of all strandings was greatest for the Golden Bay mass-stranding at DQA, but deviation from Hardy-Weinberg equilibrium at DQB suggested either sub-structure within mass-strandings (Wahlund effect) or the presence of null alleles. As for the Hector’s dolphin and other mammalian species, the influence of balancing selection acting on DQB over a long evolutionary time period was evident by a higher ratio non-synonymous to synonymous substitutions (dN/dS=9.3) and by a pattern of trans-specific allele sharing within the family of Delphinidae. Overall, diversity is surprisingly similar between these two cetacean species despite different life history characteristic, but low compared to domesticated ungulate species, such as the cow. If low MHC diversity is a general feature of cetaceans, due to the marine environment as suggested previously or rather a side effect of short-term demographic forces remains speculative. A standardised nomenclature for the increasing number of MHC alleles from cetacean is proposed in this thesis to assist with future development of this research.
5

Comparative diversity at the major histocompatibility complex in two dolphin species

Heimeier, Dorothea January 2009 (has links)
This thesis presents investigations of diversity at three genes (class I, DQA and DQB) of the Major Histocompatibility Complex (MHC) in cetaceans. The MHC genes encode for proteins that are crucial for initiating an immune response by binding invading pathogens in vertebrates. It has been acknowledged that a high diversity at these genes results in the ability to recognise a wider range of pathogens, therefore functional diversity is important for the survival of a species. Furthermore this diversity has been created under the influence of selection, which can reveal interesting contrasts with neutral markers about the history of selection of populations and species. The diversity at two genes (DQA and DQB) in natural populations of two contrasting species of cetaceans has been investigated in more detail. The species selected included both sub-species of Hector’s dolphin, the Hector’s dolphin (Cephalorhynchus hectori hectori) and the Maui’s dolphin (Cephalorhynchus hectori maui), as well as the long-finned pilot whale (Globicephala melas). These species were chosen, because both Hector’s dolphin sub-species contrast with the pilot whale species in regards to their population size, abundance, population structure and life history. For example both sub-species of Hector’s dolphin have small population sizes and only inhabit coastal areas around New Zealand, whereas the pilot whale is an abundant, pelagic dolphin species. In Chapter 2 the expression of class II MHC genes (DQA and DQB) was demonstrated for the first time for a cetacean species, the Hector’s dolphin. Using available information from the bottlenose dolphin (Tursiops truncatus), I also designed primers to investigate class I MHC. Fragments of MHC genes were amplified from cDNA, which was derived from blood samples of two Hector’s dolphins. These dolphins were the subject of a temporary live capture, presenting a unique opportunity for blood collection. No evidence was found for duplication of both MHC class II loci, but cloning suggested a minimum of three copies of class I genes within the genomic DNA. However, the expression of all class I genes was uncertain, since only one allele could be isolated from cDNA. Functionality for all three genes (class I, DQA and DQB) was supported by the evidence for balancing selection having operated on these genes, indicated by a higher ratio of non-synonymous to synonymous substitutions. In Chapter 3, a combination of single-strand conformation polymorphism (SSCP) and direct sequencing was used to describe DQA and DQB diversity in the Hector’s and Maui’s dolphin. Genetic samples for the Hector’s dolphin were available from previously collected stranding and biopsy samples (n = 233), representing three populations from the South Coast of New Zealand and the sub-species on the West Coast of the North Island of New Zealand. For the Hector’s dolphin of the South Island, a surprisingly large number of alleles at both loci (DQA = 4, DQB = 6) were found, considering their small population size and compared to other cetacean populations with larger population sizes. The Maui’s dolphin has been classified as critically endangered with less than 100 dolphins, but showed a relatively high nucleotide diversity for DQB ( = 4.5%). This diversity was based on only three alleles that have been retained in the sub-species, representing the most divergent of all six alleles. All populations showed strong geographic differentiation at both loci (DQA: FST=0.252; DQB: FST=0.333), with the greatest differentiation between the South Island population and the North Island Maui’s dolphin. Comparison to mitochondrial and microsatellite diversity suggested influence of stochastic genetic drift, although the pressure of balancing selection acting on DQB over an evolutionary time period was also evident by a higher ratio of non-synonymous to synonymous substitutions (dN/dS=5.9) and by a pattern of trans-specific allele sharing within the family of Delphinidae. In Chapter 4 similar methods were used to describe DQA and DQB in pilot whales using genetic samples from the long-finned pilot whale that were available from five mass-strandings from around New Zealand (n = 237). A larger number of alleles than for the Hector’s dolphin were found at both loci (DQA= 8; DQB= 8), although their large population size and pelagic abundance raises the expectation of an even greater number of alleles. The overall differentiation between mass-strandings was low, but significant for both loci (DQA: FST =0.012, DQB: FST =0.014). The differentiation of all strandings was greatest for the Golden Bay mass-stranding at DQA, but deviation from Hardy-Weinberg equilibrium at DQB suggested either sub-structure within mass-strandings (Wahlund effect) or the presence of null alleles. As for the Hector’s dolphin and other mammalian species, the influence of balancing selection acting on DQB over a long evolutionary time period was evident by a higher ratio non-synonymous to synonymous substitutions (dN/dS=9.3) and by a pattern of trans-specific allele sharing within the family of Delphinidae. Overall, diversity is surprisingly similar between these two cetacean species despite different life history characteristic, but low compared to domesticated ungulate species, such as the cow. If low MHC diversity is a general feature of cetaceans, due to the marine environment as suggested previously or rather a side effect of short-term demographic forces remains speculative. A standardised nomenclature for the increasing number of MHC alleles from cetacean is proposed in this thesis to assist with future development of this research.
6

Comparative diversity at the major histocompatibility complex in two dolphin species

Heimeier, Dorothea January 2009 (has links)
This thesis presents investigations of diversity at three genes (class I, DQA and DQB) of the Major Histocompatibility Complex (MHC) in cetaceans. The MHC genes encode for proteins that are crucial for initiating an immune response by binding invading pathogens in vertebrates. It has been acknowledged that a high diversity at these genes results in the ability to recognise a wider range of pathogens, therefore functional diversity is important for the survival of a species. Furthermore this diversity has been created under the influence of selection, which can reveal interesting contrasts with neutral markers about the history of selection of populations and species. The diversity at two genes (DQA and DQB) in natural populations of two contrasting species of cetaceans has been investigated in more detail. The species selected included both sub-species of Hector’s dolphin, the Hector’s dolphin (Cephalorhynchus hectori hectori) and the Maui’s dolphin (Cephalorhynchus hectori maui), as well as the long-finned pilot whale (Globicephala melas). These species were chosen, because both Hector’s dolphin sub-species contrast with the pilot whale species in regards to their population size, abundance, population structure and life history. For example both sub-species of Hector’s dolphin have small population sizes and only inhabit coastal areas around New Zealand, whereas the pilot whale is an abundant, pelagic dolphin species. In Chapter 2 the expression of class II MHC genes (DQA and DQB) was demonstrated for the first time for a cetacean species, the Hector’s dolphin. Using available information from the bottlenose dolphin (Tursiops truncatus), I also designed primers to investigate class I MHC. Fragments of MHC genes were amplified from cDNA, which was derived from blood samples of two Hector’s dolphins. These dolphins were the subject of a temporary live capture, presenting a unique opportunity for blood collection. No evidence was found for duplication of both MHC class II loci, but cloning suggested a minimum of three copies of class I genes within the genomic DNA. However, the expression of all class I genes was uncertain, since only one allele could be isolated from cDNA. Functionality for all three genes (class I, DQA and DQB) was supported by the evidence for balancing selection having operated on these genes, indicated by a higher ratio of non-synonymous to synonymous substitutions. In Chapter 3, a combination of single-strand conformation polymorphism (SSCP) and direct sequencing was used to describe DQA and DQB diversity in the Hector’s and Maui’s dolphin. Genetic samples for the Hector’s dolphin were available from previously collected stranding and biopsy samples (n = 233), representing three populations from the South Coast of New Zealand and the sub-species on the West Coast of the North Island of New Zealand. For the Hector’s dolphin of the South Island, a surprisingly large number of alleles at both loci (DQA = 4, DQB = 6) were found, considering their small population size and compared to other cetacean populations with larger population sizes. The Maui’s dolphin has been classified as critically endangered with less than 100 dolphins, but showed a relatively high nucleotide diversity for DQB ( = 4.5%). This diversity was based on only three alleles that have been retained in the sub-species, representing the most divergent of all six alleles. All populations showed strong geographic differentiation at both loci (DQA: FST=0.252; DQB: FST=0.333), with the greatest differentiation between the South Island population and the North Island Maui’s dolphin. Comparison to mitochondrial and microsatellite diversity suggested influence of stochastic genetic drift, although the pressure of balancing selection acting on DQB over an evolutionary time period was also evident by a higher ratio of non-synonymous to synonymous substitutions (dN/dS=5.9) and by a pattern of trans-specific allele sharing within the family of Delphinidae. In Chapter 4 similar methods were used to describe DQA and DQB in pilot whales using genetic samples from the long-finned pilot whale that were available from five mass-strandings from around New Zealand (n = 237). A larger number of alleles than for the Hector’s dolphin were found at both loci (DQA= 8; DQB= 8), although their large population size and pelagic abundance raises the expectation of an even greater number of alleles. The overall differentiation between mass-strandings was low, but significant for both loci (DQA: FST =0.012, DQB: FST =0.014). The differentiation of all strandings was greatest for the Golden Bay mass-stranding at DQA, but deviation from Hardy-Weinberg equilibrium at DQB suggested either sub-structure within mass-strandings (Wahlund effect) or the presence of null alleles. As for the Hector’s dolphin and other mammalian species, the influence of balancing selection acting on DQB over a long evolutionary time period was evident by a higher ratio non-synonymous to synonymous substitutions (dN/dS=9.3) and by a pattern of trans-specific allele sharing within the family of Delphinidae. Overall, diversity is surprisingly similar between these two cetacean species despite different life history characteristic, but low compared to domesticated ungulate species, such as the cow. If low MHC diversity is a general feature of cetaceans, due to the marine environment as suggested previously or rather a side effect of short-term demographic forces remains speculative. A standardised nomenclature for the increasing number of MHC alleles from cetacean is proposed in this thesis to assist with future development of this research.
7

Behavioral Performance and Evolution of Feeding Modes in Odontocetes

Kane, Emily A. 2009 May 1900 (has links)
Vertebrate evolution has resulted in a diversity of feeding mechanisms. Cetaceans are secondarily derived tetrapods that have returned to a marine habitat. As a result, they display feeding modes that have converged with more basal aquatic vertebrates, but display a diversity of new solutions and adaptations. To begin to explore the diversity of feeding adaptations among odontocetes, kinematics of feeding modes and feeding adaptations for belugas (Delphinapterus leucas), Pacific white-sided dolphins (Lagenorhynchus obliquidens), and long-finned pilot whales (Globicephala melas) were characterized. In addition, direct measurements of intraoral pressure were collected to determine maximum suction performance. Characters from these analyses were combined with data for other odontocetes, and were mapped onto a phylogeny of Odontoceti to begin to explore where changes in feeding modes took place. Feeding modes were diverse in belugas, Pacific white-sided dolphins, and pilot whales and included suction, ram, and a combination of both. In general, four phases were observed: (I) preparatory, (II) jaw opening, (III) gular depression, and (IV) jaw closing. Suction was a large component of the prey capture method in belugas and subambient pressures in excess of 100 kPa were generated. Belugas were also capable of lateral lip gape occlusion and anterior lip pursing to form a small anterior aperture. Pacific whitesided dolphins relied on ram to capture prey. However, some degree of pursing and resultant subambient pressure was observed that was likely used to compensate for high ram speeds or for prey manipulation and transport to the esophagus. Pilot whales were more similar to belugas in kinematics, but maintained high approach velocities and did not generate significant suction pressures; suction and ram were used in combination. Belugas and pilot whales appeared to employ hyolingual depression as a primary suction generation mechanism, whereas Pacific white-sided dolphins relied on fast jaw opening. Ancestral state reconstructions indicated that suction feeding capability evolved independently at least six times within Odontoceti. These results indicate the diversity of feeding behaviors in odontocetes and provide directives for future studies on the diversity of feeding in secondarily aquatic mammals.

Page generated in 0.0458 seconds