Spelling suggestions: "subject:"biosphere"" "subject:"piosphere""
1 |
The Effect Of Changing Water Distribution From Linear To Point Source On Vegetation And Soil Following Piping Of An Artesian Bore In A Semi-Arid Mulga PaddockCowley, Robyn Anne Unknown Date (has links)
The effect of redistribution of artificial stock waters from a boredrain to pipes and troughs on the vegetation and soil resources was investigated from December 1994 to October 1998 in a sheep paddock in the semi-arid mulga woodlands of south west Queensland, eastern Australia. The study examined 1) the effect of changing water distribution on the distribution of understorey biomass, sheep, cattle and macropods at the paddock scale; 2) patterns in herbivores, vegetation and soil out from the boredrain and change through time following water redistribution; 3) patterns in herbivores, vegetation and soil out from the new troughs and change through time following water redistribution; and 4) the relative effects of native versus domestic stock on piosphere development out from a trough. Landscape zone and season were major drivers of vegetation and soil dynamics and patterns in this mulga landsystem. At the paddock scale, biomass and woody cover patterns were consistent with historical grazing gradients out from the boredrain, semipermanent waters and previous and current fencelines. There was a high degree of temporal variability in herbivore distribution patterns, not just related to changing water distribution. The native herbivores which presumably have evolved in this system were more likely to be correlated with forage resources than water at the scale of this study. This is in contrast to sheep whose spatial selection of feeding sites was partly influenced by non alimentary factors such as distance to waters, winds and fences, but largely unexplained. While sheep distribution was no longer correlated with distance from the boredrain following piping at the paddock scale, there was no evidence that 1) herbivores were focusing grazing activities around new troughs and 2) that vegetation patterns have changed following water redistribution. The boredrain had distinct gradients in vegetation and soil surface condition associated with it that persisted following rainfall and the lightening and then removal of domestic stock. Gradients in functional plant composition, diversity indices, grass cover and soil stability, revealed zones of reduced production potential parallel to the drain. Following closure of the drain herbivore activity rapidly declined, but there was little evidence of rehabilitation during three years of above average rainfall. Reassessment of the site at 5 yearly intervals over a period in excess of 20 years would better tell the story of change post-drain. Current data suggests the drain induced gradient will continue to persist for many years, providing a ghost of waters past In the first two and a half years following changeover from the boredrain to point waters, there was little change to the natural landscape patterns in soil and vegetation out from the southern troughs. Patterns in soil and vegetation around troughs initially reflected patterns of geomorphic zone and tree and shrub distribution. While there was an increase in stocking intensity immediately around the new troughs, there was little evidence of a vegetation and soil response to this increased stocking activity. However increased soil erosion and restricted shrub recruitment close to the troughs perhaps signal the beginnings of change out from the new troughs through time. Comparison between prevailing total grazing pressure, kangaroo only grazing and no large herbivore grazing, found that removal of stock had the effect of dramatically increasing the rate of woody cover change over the period of the study. In contrast the proportion of unpalatable plants increased most at the highest stocking rate with both domestic and native herbivores present. Soil surface condition and plant species also responded to exclosure from domestic stock, indicating that resting paddocks has the potential to improve soil and vegetation condition providing macropod densities are at similar levels to when stock are present. Given that the rehabilitation of degraded areas adjacent to boredrains is unlikely at least in the short term, and that little change has occurred out from new troughs, it is likely that there will be little net change in degraded land as a result of piping bores in mulga landscapes with the level of water availability of this study. Factors likely to influence piosphere development and ecological and management implications for the Boredrain Replacement Program are identified.
|
2 |
Strategic management of artificial watering points for biodiversity conservationMontague-Drake, Rebecca, School of Biological, Earth & Environmental Sciences, UNSW January 2004 (has links)
Since pastoralism began in Australia???s rangelands, the number of artificial watering points (AWPs) has increased dramatically, such that today, few areas of rangeland are further than 10 km from water. This increased availability of water has caused many ecological impacts. Unfortunately, such impacts are poorly understood in the context of an Australian conservation reserve, thus hindering strategic management. This study examined the spatial distribution of vertebrate (kangaroos, small mammals, lizards and avifauna) and vegetative variables around open AWPs as well as AWPs that have been closed since pastoralism (sheep-grazing) ceased nearly thirty years ago in Sturt National Park, arid New South Wales. The study also examined vertebrate use of AWPs, with a particular emphasis on kangaroos and avifauna. The study revealed that most variables showed few differences in spatial distribution with distance from open and closed AWPs, thus suggesting that the observed piospheric impacts were primarily attributable to historical sheep-grazing. Indeed, piospheric patterns were weak suggesting some recovery over the last thirty years. That kangaroos did not exhibit water-focused grazing is no surprise, since despite their regular use of AWPs, particularly during hot, dry times, the current spatial arrangement of AWPs facilitates regular travel to, and from, such resources allowing kangaroos, like much other fauna, to distribute themselves in relation to food and shelter preferences rather than in relation to water supply. In contrast, the majority of avifaunal groups (excluding ground-dwelling species) were clustered around open AWPs, often irrespective of season, because of food and water requirements. Such spatial concentrations of avifauna are thought to cause a range of interspecific effects. Experimental AWP closure and GIS modelling showed that whilst closure of AWPs will increase the average distance to water, which will have key benefits, the majority of areas in Sturt National Park would still be accessible to most water-dependent species even if all unused AWPs were closed. Strategic retention of AWPs to replace water sources lost since European settlement, aid threatened and migratory species??? conservation and enhance nature-based tourism opportunities is thus recommended and an example of a strategic management and monitoring plan outlined.
|
3 |
Strategic management of artificial watering points for biodiversity conservationMontague-Drake, Rebecca, School of Biological, Earth & Environmental Sciences, UNSW January 2004 (has links)
Since pastoralism began in Australia???s rangelands, the number of artificial watering points (AWPs) has increased dramatically, such that today, few areas of rangeland are further than 10 km from water. This increased availability of water has caused many ecological impacts. Unfortunately, such impacts are poorly understood in the context of an Australian conservation reserve, thus hindering strategic management. This study examined the spatial distribution of vertebrate (kangaroos, small mammals, lizards and avifauna) and vegetative variables around open AWPs as well as AWPs that have been closed since pastoralism (sheep-grazing) ceased nearly thirty years ago in Sturt National Park, arid New South Wales. The study also examined vertebrate use of AWPs, with a particular emphasis on kangaroos and avifauna. The study revealed that most variables showed few differences in spatial distribution with distance from open and closed AWPs, thus suggesting that the observed piospheric impacts were primarily attributable to historical sheep-grazing. Indeed, piospheric patterns were weak suggesting some recovery over the last thirty years. That kangaroos did not exhibit water-focused grazing is no surprise, since despite their regular use of AWPs, particularly during hot, dry times, the current spatial arrangement of AWPs facilitates regular travel to, and from, such resources allowing kangaroos, like much other fauna, to distribute themselves in relation to food and shelter preferences rather than in relation to water supply. In contrast, the majority of avifaunal groups (excluding ground-dwelling species) were clustered around open AWPs, often irrespective of season, because of food and water requirements. Such spatial concentrations of avifauna are thought to cause a range of interspecific effects. Experimental AWP closure and GIS modelling showed that whilst closure of AWPs will increase the average distance to water, which will have key benefits, the majority of areas in Sturt National Park would still be accessible to most water-dependent species even if all unused AWPs were closed. Strategic retention of AWPs to replace water sources lost since European settlement, aid threatened and migratory species??? conservation and enhance nature-based tourism opportunities is thus recommended and an example of a strategic management and monitoring plan outlined.
|
4 |
The effects of artificial watering points on the distribution and abundance of avifauna in an arid and semi-arid mallee environmentHarrington, Rhidian January 2002 (has links) (PDF)
The role of artificial watering points in the avifaunal dynamics of the semi-arid mallee woodlands of southeast Australia was examined. Species richness and abundance were monitored throughout the year at different distances from water to determine how birds were distributed around water points and how this changed in relation to environmental factors such as climate. Vegetation attributes were also measured to determine which factors explained patterns in the avifauna with distance from water, and also to allow a description of the vegetation in relation to the water points. Water points were monitored throughout the year to determine which species were utilising them, under which environmental circumstances and for what purposes. Knowledge of the water utilisation behaviour of individual bird species allowed some explanation of their distribution patterns, as well as an ability to predict the likely effects of water point closure on those bird species. The closure of two water points during the study allowed an assessment of the immediate effects of water point closure on avifauna (For complete abstract open document)
|
5 |
Effects of sheep, kangaroos and rabbits on the regeneration of trees and shrubs in the chenopod shrublands, South AustraliaPalisetty, Raghunadh January 2007 (has links)
After European settlement, Australian rangelands especially in South Australia underwent significant changes because of the main land use of pastoralism. Many studies have revealed that the plant communities are negatively effected by herbivory mainly by sheep. The main aim of this study is to separate the different effects of sheep, rabbits and kangaroos. This was examined by survey supported by experimental and modelling research. A 32,000 km² area previously surveyed by Tiver and Andrew (1997) in eastern South Australia was re-surveyed to monitor populations of perennial plant species at sites of various intensity of grazing by sheep, rabbits and kangaroos (goats populations are low in the study area), the most important vertebrate herbivores. Plant population data were collected in both sheep paddocks and historically ungrazed by sheep (road reserves) by using the Random Walk method and analyzed using Generalized Linear Modelling (GLM) to separate the effects of sheep and rabbits on plant regeneration and their regeneration in response to grazing. These data were also compared to similar data collected by Tiver and Andrew in 1992 (1997) to ascertain if the reduction in rabbit numbers through introduction of RCV had allowed increased regeneration. Regeneration of many species inside paddocks were negatively affected and species in roadside reserves neither did not significantly increase from 1992 to 2004. However, some species showed increase of populations in spite of sheep grazing, with some species being less susceptible than others. This research also indicates kangaroo grazing impact on some plant species. Reduction in rabbit numbers following the 1995 release of calicivirus has not been effective in restoring regeneration. Another experiment was conducted at Middleback Field Station near Whyalla to identify herbivore grazing pressure on the arid zone plant species Acacia aneura using unfenced, sheep fenced and rabbit fenced grazing exclosures. This experiment was set up with seedlings in exclosures, ten replicates of each treatment, at plots four different distances from the watering point to identify the survivorship of seedlings. Data were collected by recording canopy volumes of seedling over an 18 month period and analyzed by Residual Maximal Likelihood (REML). Seedlings both near and far from the watering point were severely effected by large herbivores, either sheep, kangaroos or both, and in a separate experiment kangaroo grazing effects on the seedling were also identified. Seedlings browsed by the rabbits were recovered better than the seedlings grazed by the large herbivores. Decreasing kangaroo activities has been noticed when the rabbit movements increased. Computer modelling was conducted to predict the future plant population structure over 500 years using a matrix population model developed by Tiver et al. (2006) and using data collected in the survey as a starting point. Extinction probabilities of populations of Acacia aneura near watering points, far from watering points and under pulse grazing scenarios were compared. Sheep grazing was found to cause eventual extinction of populations in all parts of sheep paddocks. Together, the results indicate that sheep are the major herbivore suppressing regeneration of perennial plant species. Kangaroo and rabbits have an identifiable but lesser effect. The results have implications for conservation and pastoral management. To achieve ecological sustainability of arid lands a land-use system including a network of reserves ungrazed by sheep and with control of both rabbit and kangaroo numbers will be required.
|
6 |
Assessing waterhole design and determining the impact of artificial waterholes in Balule nature reserve, South AfricaSmith, Eilidh 01 1900 (has links)
Herbivores have a significant influence on their environment. Factors that influence herbivore distribution in a landscape are important for conservation. Artificial water provision is one such factor, with water sources being focal points of herbivore activity. Variation between herbivore utilisation of different waterhole types and habitat integrity surrounding the different waterholes is assessed in this study. Correlations are drawn between herbivore utilisation and habitat integrity to quantify the impact that artificial waterholes have on the landscape. A scoring system is devised to investigate the various factors affecting vegetation around artificial waterholes. Results show that there are significant variations between herbivore utilisation for different artificial waterhole types, as well as significant variation in habitat integrity surrounding the different waterhole types. Distance between waterholes and drainage lines, and utilisation by specific herbivore species have a significant impact on habitat integrity - specifically affecting veld condition and disturbance observed on woody plant species. A habitat score that was created by combining data from both the herbaceous and woody layers is not affected by waterhole type, distance from waterholes, or the different herbivore species utilising the different waterhole types. Earth dams have the greatest impact on surrounding vegetation and are the most utilised waterhole type. Closures of earth dams are not recommended due to their importance to herbivores. Less utilised waterhole types are also important, mitigating the impact of herbivore damage to vegetation at earth dams. / Environmental Sciences / M. Sc. (Nature Conservation)
|
Page generated in 0.0265 seconds