• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A convolutive model for polyphonic instrument identification and pitch detection using combined classification

Weese, Joshua L. January 1900 (has links)
Master of Science / Department of Computing and Information Sciences / William H. Hsu / Pitch detection and instrument identification can be achieved with relatively high accuracy when considering monophonic signals in music; however, accurately classifying polyphonic signals in music remains an unsolved research problem. Pitch and instrument classification is a subset of Music Information Retrieval (MIR) and automatic music transcription, both having numerous research and real-world applications. Several areas of research are covered in this thesis, including the fast Fourier transform, onset detection, convolution, and filtering. Basic music theory and terms are also presented in order to explain the context and structure of data used. The focus of this thesis is on the representation of musical signals in the frequency domain. Polyphonic signals with many different voices and frequencies can be exceptionally complex. This thesis presents a new model for representing the spectral structure of polyphonic signals: Uniform MAx Gaussian Envelope (UMAGE). The new spectral envelope precisely approximates the distribution of frequency parts in the spectrum while still being resilient to oscillating rapidly (noise) and is able to generalize well without losing the representation of the original spectrum. When subjectively compared to other spectral envelope methods, such as the linear predictive coding envelope method and the cepstrum envelope method, UMAGE is able to model high order polyphonic signals without dropping partials (frequencies present in the signal). In other words, UMAGE is able to model a signal independent of the signal’s periodicity. The performance of UMAGE is evaluated both objectively and subjectively. It is shown that UMAGE is robust at modeling the distribution of frequencies in simple and complex polyphonic signals. Combined classification (combiners), a methodology for learning large concepts, is used to simplify the learning process and boost classification results. The output of each learner is then averaged to get the final result. UMAGE is less accurate when identifying pitches; however, it is able to achieve accuracy in identifying instrument groups on order-10 polyphonic signals (ten voices), which is competitive with the current state of the field.
12

Pitch tracking and speech enhancement in noisy and reverberant environments

Wu, Mingyang 07 November 2003 (has links)
No description available.
13

Non-negative matrix decomposition approaches to frequency domain analysis of music audio signals

Wood, Sean 12 1900 (has links)
On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante. / We study the application of unsupervised matrix decomposition algorithms such as Non-negative Matrix Factorization (NMF) to frequency domain representations of music audio signals. These algorithms, driven by a given reconstruction error function, learn a set of basis functions and a set of corresponding coefficients that approximate the input signal. We compare the use of three reconstruction error functions when NMF is applied to monophonic and harmonized musical scales: least squares, Kullback-Leibler divergence, and a recently introduced “phase-aware” divergence measure. Novel supervised methods for interpreting the resulting decompositions are presented and compared to previously used methods that rely on domain knowledge. Finally, the ability of the learned basis functions to generalize across musical parameter values including note amplitude, note duration and instrument type, are analyzed. To do so, we introduce two basis function labeling algorithms that outperform the previous labeling approach in the majority of our tests, instrument type with monophonic audio being the only notable exception.
14

Non-negative matrix decomposition approaches to frequency domain analysis of music audio signals

Wood, Sean 12 1900 (has links)
On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante. / We study the application of unsupervised matrix decomposition algorithms such as Non-negative Matrix Factorization (NMF) to frequency domain representations of music audio signals. These algorithms, driven by a given reconstruction error function, learn a set of basis functions and a set of corresponding coefficients that approximate the input signal. We compare the use of three reconstruction error functions when NMF is applied to monophonic and harmonized musical scales: least squares, Kullback-Leibler divergence, and a recently introduced “phase-aware” divergence measure. Novel supervised methods for interpreting the resulting decompositions are presented and compared to previously used methods that rely on domain knowledge. Finally, the ability of the learned basis functions to generalize across musical parameter values including note amplitude, note duration and instrument type, are analyzed. To do so, we introduce two basis function labeling algorithms that outperform the previous labeling approach in the majority of our tests, instrument type with monophonic audio being the only notable exception.

Page generated in 0.0944 seconds