• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • Tagged with
  • 28
  • 18
  • 18
  • 17
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

O Granito europa e o grupo Iricoumé na parte leste do distrito mineiro de Pitinga (Amazonas)

Prado, Maurício January 2006 (has links)
O granito Europa intrude rochas do Grupo Iricoumé, que é constituído predominantemente por rochas vulcanoclásticas de ambiente subaéreo (ignimbritos ricos em cristais, tufos maciços finos e arenitos sílticos tufáceos) e, subordinadamente, por riolitos hipabissais com composições equivalentes a sienogranitos, provavelmente geradas em ambiente do tipo caldeira. O granito Europa é um pertita granito (hipersolvus) de natureza peralcalina, não têm relação genética com as rochas vulcânicas do Grupo Iricoumé, mas pode ter sido originado em estágios de ressurgência. Dados petrográficos e geoquímicos atestam que a cristalização fracionada foi o principal mecanismo atuante durante a cristalização, gerando as fácies 1 e 2 (mais evoluída). Anomalias de Nb no solo sobre a fácies 2 são relacionadas à desestabilização de astrofilita por processo intempérico. / The Europa granite is intrusive in rocks of Iricoumé Group, which is constituted principally by vulcanoclastic rocks formed in a subaerial environment (ignimbrites rich in crystals, thin massive tuffs and siltic tufaceous arenites) and minor hipabissal riolites with similar compositions to sienogranites. The volcanic rocks are probably generated in a caldera environment. The granite Europa is a pertita peralkaline granite (hipersolvus) without genetic relation to the volcanic rocks from the Iricoumé Group, but may have been generated by ressurgence. Petrographic and geochemical data atest that fractionated crystallization was the principal mechanism during the crystallization an generating the facies 1 and 2 (high evoluted). Nb soil anomalies on the facies 2 are related to the astrophillite weathering.
12

Xenotima, Gagarinita, Fluocerita e Waimirita da Mina Pitinga (AM) : mineralogia e avaliação preliminar do potencial do albita granito para exploração de elementos Terras Raras e Ítrio

Pires, Amanda Cristina January 2010 (has links)
A jazida de Pitinga (Sn, Nb, Ta e criolita) é um depósito de classe mundial, onde o minério ocorre associado à fácies albita granito do granito Madeira (~1,83 Ga). Este trabalho é centralizado em minerais de ETR e Y, visando contribuir para o entendimento da evolução do sistema albita granito e avaliar preliminarmente o potencial desta rocha para exploração destes elementos como coprodutos. A fácies albita granito de núcleo possui concentrações de ETR de 180,76 a 12.168,04 ppm (média de 1.725 ppm) e de Y de 35,6 ppm a 7.846,1 ppm (média de 825 ppm). No albita granito de borda, as concentrações destes elementos são da ordem de 30% menores do que no de núcleo. A xenotima é o principal mineral de minério de ETR e Y. Ocorre disseminada (<0,5% no albita granito de núcleo e <1% no albita granito transicional) e na forma de aglomerados de cristais centimétricos em pegmatitos na parte central do albita granito de núcleo. É caracterizada pelo alto conteúdo de ETRP (17% a 24% no conjunto), especialmente na xenotima disseminada no albita granito de núcleo (22% a 24%). O Y na xenotima varia de 19 a 28%, os conteúdos de U, Th e Ca são baixos e uma forte correlação positiva entre Si e Th indica a ocorrência de substituição do tipo torita: Y3+ + P5+ = Th4+ + Si4+. O F ocorre em concentrações de 0,11% até 5,10% na xenotima do albita granito de núcleo, de 0,64% a 1,40% na xenotima do albita granito pegmatítico e de 0 a 0,68 na xenotima da fácies transicional. Sua incorporação na estrutura da xenotima ocorreu segundo as substituições: [PO4]5- + (Th)4+ = [ . (F)4]4- + (Y, ETR)3+ e [PO4]5- + (Ca)2+ = [ . (F)4]4- + (Na)1+. O encurtamento do parâmetro c, com o menor valor já encontrado em xenotima natural, é relacionado ao alto conteúdo de ETR e especialmente à abundância de Yb e Er. Relações invertidas com o padrão sintético YPO4 e modificações dos parâmetros a e c em diferentes proporções são relacionadas à substituição de O por F. Os dados obtidos por MSE determinaram uma idade de 1838 +/- 145Ma. A gagarinita ocorre associada ao albita granito de núcleo na base da Zona Criolítica B, onde poderá constituir um mineral de minério de ETR e Y adicionalmente à xenotima. Sua composição é Na0,24Ca0,58Y1,01(ETR)0,39F5,81. Possui abundantes inclusões (<1 mm) de fluocerita (Ce0,53-0,66 La0,09-0,26 Nd0,08-0,26 Sm0,01-0,04 Eu0,01 Y0-0,03 F3,3-4,14). Esta tem seus parâmetros cristalográficos (a= 5,97 a 5,99 e c= 3,50 a 3,53) modificados em relação aos padrões sintéticos pela presença significativa de La e Nd em solução sólida. A origem destas inclusões foi investigada detalhadamente por diversas técnicas (MET, MEV, IF) concluindo-se como mais provável sua formação através da exsolução dos ETR de raio maior do que o do Sm, a partir de uma gagarinita inicial (Na0.23Ca0.53REE0.99Y0.48F7.69) metaestável. A waimirita é um mineral novo que ocorre em veios tardios, de espessura centimétrica, associada com um polítipo da caulinita. Foi caracterizada como um fluoreto de Y [(ETR,Y)F3] no qual os ETR predominantes são os pesados (especialmente o Dy) e Ca e Na ocorrem em pequenas quantidades. A evolução geoquímica dos ETR em rocha total contraria os modelos convencionais de enriquecimento de ETRL nas fácies tardias. O efeito tetrad (mais freqüente na terceira tetra) ocorre no albita granito de núcleo, albita granito de borda, granito hipersolvus e no depósito criolítico maciço e é relacionado ao maior enriquecimento relativo de ETRP nas fácies tardias. No albita granito de núcleo, o efeito tetrad total (TEt) é de 2,48 e o na terceira tetra (TE3) é de 1,87. As partes desta rocha menos enriquecidas em ETR apresentam efeito na primeira tetra (TE1) de 1,34. As amostras extremamente ricas em ETR raramente apresentam efeito tetrad, significando que este fenômeno não está relacionado apenas com a abundância destes elementos. O TEt é maior nas porções do granito com mais flúor, porém não ocorre correlação estatística significativa deste efeito com o flúor, com as anomalias de Eu e Ce e com a razão ETRL/ETRP. / The Pitinga mine (Sn, Nb, Ta and cryolite) is a world-class deposit associated with albite-enriched facies of the Madeira granite (1.83 Ga). This study deals on RRE and Y minerals in order to contribute to the understanding of the albite-enriched system evolution and evaluate preliminarily the potential for exploitation of these elements as coproduct. The REE grades in the core albite-enriched granite ranges from 180 to 12168 ppm (average 1725 ppm) and the Y grades ranges from 35ppm to 7846 ppm (average 825 ppm). In the border albite-enriched granite, the grades are 30% lower than in the core facies. Xenotime is the principal REE and Y ore mineral. It occurs disseminated (<0.5% in the core albite-enriched granite and <1% in the transitional albite granite) and like agglomerates of centimeter crystals in the pegmatitic albite-enriched granite on central part of the core albite-enriched granite. This mineral has high contents of HREE (17% to 24% in all), especially in the core albiteenriched granite xenotime (22% to 24%). Y in xenotime ranges form 19% to 8%; U, Th and Ca contents are low and a strong positive correlation between Si and Th is related to the thorite type substitution: Y3+ + P5+ = Th4+ + Si4+. The F concentrations ranges from 0,11% to 5,10% in the core albite-enriched granite xenotime, from 0,64% to 1,40% in the pegmatitic albite-enriched granite xenotime and from 0 to 0,68% in the transitional albite-enriched granite xenotime. Its incorporation in the xenotime structure occurred through the substitutions: [PO4]5- + (Th)4+ = [ . (F)4]4- + (Y, ETR)3+ and [PO4]5- + (Ca)2+ = [ . (F)4]4- + (Na)1+. The shortening of the c parameter, the lowest value ever found in natural xenotime, is related to the high REE content and especially to the Yb and Er abundance. Reversed relations with the YPO4 synthetic pattern and modifications on the a and c parameters in different proportions are related to the replacement of O by F. The chemical data determined an age of 1,838 +/- 145Ma. Gagarinite occurs associated to the core albite-enriched granite, in the lower part of the cryolitic zone B, where it could be a mineral ore REE and Y in addition to xenotime. Its composition is Na0,24Ca0,58Y1,01(ETR)0,39F5,81. It has abundant inclusions (<1 mm) of fluocerite (Ce0,53-0,66 La0,09-0,26 Nd0,08-0,26 Sm0,01-0,04 Eu0,01 Y0-0,03 F3,3-4,14) with crystallographic parameters (a= 5.97 to 5.99 and c= 3.50 to 3.53) modified compared to synthetic standards by the significant amounts of La and Nd in solid solution. The origin of these inclusions was investigated in detail by various techniques (TEM, SEM, FI). It is most likely formed by exsolution of REE with radius greater than that of Sm, from an initial metastable gagarinite (Na0.23Ca0.53REE0.99Y0.48F7.69). Waimirite is a new mineral that occurs associated with a kaolinite polytype in later veins. It is characterized as a Y fluoride [(REE, Y)F3] in which the predominant REE are the HREE (especially Dy); Ca and Na occur in small quantities. The tetrad effect (more frequent in the third tetra) occurs in the core albiteenriched granite, border albite-enriched granite, hypersolvus granite and in the massive cryolite deposit, and is associated with HREE enrichment in the late facies. In the core albiteenriched granite the total tetrad effect (TET) is 2.48 and the third tetra (NT3) is 1.87. Portions of this rock less enriched in REE have effect in the first tetra (ES1) of 1.34. Samples extremely rich in REE rarely present tetrad effect, meaning that this phenomenon is not only related with the abundance of these elements. There is no statistically significant correlation between tetrad effect and Eu and Ce anomalies, LREE / HREE and F.
13

Xenotima, Gagarinita, Fluocerita e Waimirita da Mina Pitinga (AM) : mineralogia e avaliação preliminar do potencial do albita granito para exploração de elementos Terras Raras e Ítrio

Pires, Amanda Cristina January 2010 (has links)
A jazida de Pitinga (Sn, Nb, Ta e criolita) é um depósito de classe mundial, onde o minério ocorre associado à fácies albita granito do granito Madeira (~1,83 Ga). Este trabalho é centralizado em minerais de ETR e Y, visando contribuir para o entendimento da evolução do sistema albita granito e avaliar preliminarmente o potencial desta rocha para exploração destes elementos como coprodutos. A fácies albita granito de núcleo possui concentrações de ETR de 180,76 a 12.168,04 ppm (média de 1.725 ppm) e de Y de 35,6 ppm a 7.846,1 ppm (média de 825 ppm). No albita granito de borda, as concentrações destes elementos são da ordem de 30% menores do que no de núcleo. A xenotima é o principal mineral de minério de ETR e Y. Ocorre disseminada (<0,5% no albita granito de núcleo e <1% no albita granito transicional) e na forma de aglomerados de cristais centimétricos em pegmatitos na parte central do albita granito de núcleo. É caracterizada pelo alto conteúdo de ETRP (17% a 24% no conjunto), especialmente na xenotima disseminada no albita granito de núcleo (22% a 24%). O Y na xenotima varia de 19 a 28%, os conteúdos de U, Th e Ca são baixos e uma forte correlação positiva entre Si e Th indica a ocorrência de substituição do tipo torita: Y3+ + P5+ = Th4+ + Si4+. O F ocorre em concentrações de 0,11% até 5,10% na xenotima do albita granito de núcleo, de 0,64% a 1,40% na xenotima do albita granito pegmatítico e de 0 a 0,68 na xenotima da fácies transicional. Sua incorporação na estrutura da xenotima ocorreu segundo as substituições: [PO4]5- + (Th)4+ = [ . (F)4]4- + (Y, ETR)3+ e [PO4]5- + (Ca)2+ = [ . (F)4]4- + (Na)1+. O encurtamento do parâmetro c, com o menor valor já encontrado em xenotima natural, é relacionado ao alto conteúdo de ETR e especialmente à abundância de Yb e Er. Relações invertidas com o padrão sintético YPO4 e modificações dos parâmetros a e c em diferentes proporções são relacionadas à substituição de O por F. Os dados obtidos por MSE determinaram uma idade de 1838 +/- 145Ma. A gagarinita ocorre associada ao albita granito de núcleo na base da Zona Criolítica B, onde poderá constituir um mineral de minério de ETR e Y adicionalmente à xenotima. Sua composição é Na0,24Ca0,58Y1,01(ETR)0,39F5,81. Possui abundantes inclusões (<1 mm) de fluocerita (Ce0,53-0,66 La0,09-0,26 Nd0,08-0,26 Sm0,01-0,04 Eu0,01 Y0-0,03 F3,3-4,14). Esta tem seus parâmetros cristalográficos (a= 5,97 a 5,99 e c= 3,50 a 3,53) modificados em relação aos padrões sintéticos pela presença significativa de La e Nd em solução sólida. A origem destas inclusões foi investigada detalhadamente por diversas técnicas (MET, MEV, IF) concluindo-se como mais provável sua formação através da exsolução dos ETR de raio maior do que o do Sm, a partir de uma gagarinita inicial (Na0.23Ca0.53REE0.99Y0.48F7.69) metaestável. A waimirita é um mineral novo que ocorre em veios tardios, de espessura centimétrica, associada com um polítipo da caulinita. Foi caracterizada como um fluoreto de Y [(ETR,Y)F3] no qual os ETR predominantes são os pesados (especialmente o Dy) e Ca e Na ocorrem em pequenas quantidades. A evolução geoquímica dos ETR em rocha total contraria os modelos convencionais de enriquecimento de ETRL nas fácies tardias. O efeito tetrad (mais freqüente na terceira tetra) ocorre no albita granito de núcleo, albita granito de borda, granito hipersolvus e no depósito criolítico maciço e é relacionado ao maior enriquecimento relativo de ETRP nas fácies tardias. No albita granito de núcleo, o efeito tetrad total (TEt) é de 2,48 e o na terceira tetra (TE3) é de 1,87. As partes desta rocha menos enriquecidas em ETR apresentam efeito na primeira tetra (TE1) de 1,34. As amostras extremamente ricas em ETR raramente apresentam efeito tetrad, significando que este fenômeno não está relacionado apenas com a abundância destes elementos. O TEt é maior nas porções do granito com mais flúor, porém não ocorre correlação estatística significativa deste efeito com o flúor, com as anomalias de Eu e Ce e com a razão ETRL/ETRP. / The Pitinga mine (Sn, Nb, Ta and cryolite) is a world-class deposit associated with albite-enriched facies of the Madeira granite (1.83 Ga). This study deals on RRE and Y minerals in order to contribute to the understanding of the albite-enriched system evolution and evaluate preliminarily the potential for exploitation of these elements as coproduct. The REE grades in the core albite-enriched granite ranges from 180 to 12168 ppm (average 1725 ppm) and the Y grades ranges from 35ppm to 7846 ppm (average 825 ppm). In the border albite-enriched granite, the grades are 30% lower than in the core facies. Xenotime is the principal REE and Y ore mineral. It occurs disseminated (<0.5% in the core albite-enriched granite and <1% in the transitional albite granite) and like agglomerates of centimeter crystals in the pegmatitic albite-enriched granite on central part of the core albite-enriched granite. This mineral has high contents of HREE (17% to 24% in all), especially in the core albiteenriched granite xenotime (22% to 24%). Y in xenotime ranges form 19% to 8%; U, Th and Ca contents are low and a strong positive correlation between Si and Th is related to the thorite type substitution: Y3+ + P5+ = Th4+ + Si4+. The F concentrations ranges from 0,11% to 5,10% in the core albite-enriched granite xenotime, from 0,64% to 1,40% in the pegmatitic albite-enriched granite xenotime and from 0 to 0,68% in the transitional albite-enriched granite xenotime. Its incorporation in the xenotime structure occurred through the substitutions: [PO4]5- + (Th)4+ = [ . (F)4]4- + (Y, ETR)3+ and [PO4]5- + (Ca)2+ = [ . (F)4]4- + (Na)1+. The shortening of the c parameter, the lowest value ever found in natural xenotime, is related to the high REE content and especially to the Yb and Er abundance. Reversed relations with the YPO4 synthetic pattern and modifications on the a and c parameters in different proportions are related to the replacement of O by F. The chemical data determined an age of 1,838 +/- 145Ma. Gagarinite occurs associated to the core albite-enriched granite, in the lower part of the cryolitic zone B, where it could be a mineral ore REE and Y in addition to xenotime. Its composition is Na0,24Ca0,58Y1,01(ETR)0,39F5,81. It has abundant inclusions (<1 mm) of fluocerite (Ce0,53-0,66 La0,09-0,26 Nd0,08-0,26 Sm0,01-0,04 Eu0,01 Y0-0,03 F3,3-4,14) with crystallographic parameters (a= 5.97 to 5.99 and c= 3.50 to 3.53) modified compared to synthetic standards by the significant amounts of La and Nd in solid solution. The origin of these inclusions was investigated in detail by various techniques (TEM, SEM, FI). It is most likely formed by exsolution of REE with radius greater than that of Sm, from an initial metastable gagarinite (Na0.23Ca0.53REE0.99Y0.48F7.69). Waimirite is a new mineral that occurs associated with a kaolinite polytype in later veins. It is characterized as a Y fluoride [(REE, Y)F3] in which the predominant REE are the HREE (especially Dy); Ca and Na occur in small quantities. The tetrad effect (more frequent in the third tetra) occurs in the core albiteenriched granite, border albite-enriched granite, hypersolvus granite and in the massive cryolite deposit, and is associated with HREE enrichment in the late facies. In the core albiteenriched granite the total tetrad effect (TET) is 2.48 and the third tetra (NT3) is 1.87. Portions of this rock less enriched in REE have effect in the first tetra (ES1) of 1.34. Samples extremely rich in REE rarely present tetrad effect, meaning that this phenomenon is not only related with the abundance of these elements. There is no statistically significant correlation between tetrad effect and Eu and Ce anomalies, LREE / HREE and F.
14

O Granito europa e o grupo Iricoumé na parte leste do distrito mineiro de Pitinga (Amazonas)

Prado, Maurício January 2006 (has links)
O granito Europa intrude rochas do Grupo Iricoumé, que é constituído predominantemente por rochas vulcanoclásticas de ambiente subaéreo (ignimbritos ricos em cristais, tufos maciços finos e arenitos sílticos tufáceos) e, subordinadamente, por riolitos hipabissais com composições equivalentes a sienogranitos, provavelmente geradas em ambiente do tipo caldeira. O granito Europa é um pertita granito (hipersolvus) de natureza peralcalina, não têm relação genética com as rochas vulcânicas do Grupo Iricoumé, mas pode ter sido originado em estágios de ressurgência. Dados petrográficos e geoquímicos atestam que a cristalização fracionada foi o principal mecanismo atuante durante a cristalização, gerando as fácies 1 e 2 (mais evoluída). Anomalias de Nb no solo sobre a fácies 2 são relacionadas à desestabilização de astrofilita por processo intempérico. / The Europa granite is intrusive in rocks of Iricoumé Group, which is constituted principally by vulcanoclastic rocks formed in a subaerial environment (ignimbrites rich in crystals, thin massive tuffs and siltic tufaceous arenites) and minor hipabissal riolites with similar compositions to sienogranites. The volcanic rocks are probably generated in a caldera environment. The granite Europa is a pertita peralkaline granite (hipersolvus) without genetic relation to the volcanic rocks from the Iricoumé Group, but may have been generated by ressurgence. Petrographic and geochemical data atest that fractionated crystallization was the principal mechanism during the crystallization an generating the facies 1 and 2 (high evoluted). Nb soil anomalies on the facies 2 are related to the astrophillite weathering.
15

Xenotima, Gagarinita, Fluocerita e Waimirita da Mina Pitinga (AM) : mineralogia e avaliação preliminar do potencial do albita granito para exploração de elementos Terras Raras e Ítrio

Pires, Amanda Cristina January 2010 (has links)
A jazida de Pitinga (Sn, Nb, Ta e criolita) é um depósito de classe mundial, onde o minério ocorre associado à fácies albita granito do granito Madeira (~1,83 Ga). Este trabalho é centralizado em minerais de ETR e Y, visando contribuir para o entendimento da evolução do sistema albita granito e avaliar preliminarmente o potencial desta rocha para exploração destes elementos como coprodutos. A fácies albita granito de núcleo possui concentrações de ETR de 180,76 a 12.168,04 ppm (média de 1.725 ppm) e de Y de 35,6 ppm a 7.846,1 ppm (média de 825 ppm). No albita granito de borda, as concentrações destes elementos são da ordem de 30% menores do que no de núcleo. A xenotima é o principal mineral de minério de ETR e Y. Ocorre disseminada (<0,5% no albita granito de núcleo e <1% no albita granito transicional) e na forma de aglomerados de cristais centimétricos em pegmatitos na parte central do albita granito de núcleo. É caracterizada pelo alto conteúdo de ETRP (17% a 24% no conjunto), especialmente na xenotima disseminada no albita granito de núcleo (22% a 24%). O Y na xenotima varia de 19 a 28%, os conteúdos de U, Th e Ca são baixos e uma forte correlação positiva entre Si e Th indica a ocorrência de substituição do tipo torita: Y3+ + P5+ = Th4+ + Si4+. O F ocorre em concentrações de 0,11% até 5,10% na xenotima do albita granito de núcleo, de 0,64% a 1,40% na xenotima do albita granito pegmatítico e de 0 a 0,68 na xenotima da fácies transicional. Sua incorporação na estrutura da xenotima ocorreu segundo as substituições: [PO4]5- + (Th)4+ = [ . (F)4]4- + (Y, ETR)3+ e [PO4]5- + (Ca)2+ = [ . (F)4]4- + (Na)1+. O encurtamento do parâmetro c, com o menor valor já encontrado em xenotima natural, é relacionado ao alto conteúdo de ETR e especialmente à abundância de Yb e Er. Relações invertidas com o padrão sintético YPO4 e modificações dos parâmetros a e c em diferentes proporções são relacionadas à substituição de O por F. Os dados obtidos por MSE determinaram uma idade de 1838 +/- 145Ma. A gagarinita ocorre associada ao albita granito de núcleo na base da Zona Criolítica B, onde poderá constituir um mineral de minério de ETR e Y adicionalmente à xenotima. Sua composição é Na0,24Ca0,58Y1,01(ETR)0,39F5,81. Possui abundantes inclusões (<1 mm) de fluocerita (Ce0,53-0,66 La0,09-0,26 Nd0,08-0,26 Sm0,01-0,04 Eu0,01 Y0-0,03 F3,3-4,14). Esta tem seus parâmetros cristalográficos (a= 5,97 a 5,99 e c= 3,50 a 3,53) modificados em relação aos padrões sintéticos pela presença significativa de La e Nd em solução sólida. A origem destas inclusões foi investigada detalhadamente por diversas técnicas (MET, MEV, IF) concluindo-se como mais provável sua formação através da exsolução dos ETR de raio maior do que o do Sm, a partir de uma gagarinita inicial (Na0.23Ca0.53REE0.99Y0.48F7.69) metaestável. A waimirita é um mineral novo que ocorre em veios tardios, de espessura centimétrica, associada com um polítipo da caulinita. Foi caracterizada como um fluoreto de Y [(ETR,Y)F3] no qual os ETR predominantes são os pesados (especialmente o Dy) e Ca e Na ocorrem em pequenas quantidades. A evolução geoquímica dos ETR em rocha total contraria os modelos convencionais de enriquecimento de ETRL nas fácies tardias. O efeito tetrad (mais freqüente na terceira tetra) ocorre no albita granito de núcleo, albita granito de borda, granito hipersolvus e no depósito criolítico maciço e é relacionado ao maior enriquecimento relativo de ETRP nas fácies tardias. No albita granito de núcleo, o efeito tetrad total (TEt) é de 2,48 e o na terceira tetra (TE3) é de 1,87. As partes desta rocha menos enriquecidas em ETR apresentam efeito na primeira tetra (TE1) de 1,34. As amostras extremamente ricas em ETR raramente apresentam efeito tetrad, significando que este fenômeno não está relacionado apenas com a abundância destes elementos. O TEt é maior nas porções do granito com mais flúor, porém não ocorre correlação estatística significativa deste efeito com o flúor, com as anomalias de Eu e Ce e com a razão ETRL/ETRP. / The Pitinga mine (Sn, Nb, Ta and cryolite) is a world-class deposit associated with albite-enriched facies of the Madeira granite (1.83 Ga). This study deals on RRE and Y minerals in order to contribute to the understanding of the albite-enriched system evolution and evaluate preliminarily the potential for exploitation of these elements as coproduct. The REE grades in the core albite-enriched granite ranges from 180 to 12168 ppm (average 1725 ppm) and the Y grades ranges from 35ppm to 7846 ppm (average 825 ppm). In the border albite-enriched granite, the grades are 30% lower than in the core facies. Xenotime is the principal REE and Y ore mineral. It occurs disseminated (<0.5% in the core albite-enriched granite and <1% in the transitional albite granite) and like agglomerates of centimeter crystals in the pegmatitic albite-enriched granite on central part of the core albite-enriched granite. This mineral has high contents of HREE (17% to 24% in all), especially in the core albiteenriched granite xenotime (22% to 24%). Y in xenotime ranges form 19% to 8%; U, Th and Ca contents are low and a strong positive correlation between Si and Th is related to the thorite type substitution: Y3+ + P5+ = Th4+ + Si4+. The F concentrations ranges from 0,11% to 5,10% in the core albite-enriched granite xenotime, from 0,64% to 1,40% in the pegmatitic albite-enriched granite xenotime and from 0 to 0,68% in the transitional albite-enriched granite xenotime. Its incorporation in the xenotime structure occurred through the substitutions: [PO4]5- + (Th)4+ = [ . (F)4]4- + (Y, ETR)3+ and [PO4]5- + (Ca)2+ = [ . (F)4]4- + (Na)1+. The shortening of the c parameter, the lowest value ever found in natural xenotime, is related to the high REE content and especially to the Yb and Er abundance. Reversed relations with the YPO4 synthetic pattern and modifications on the a and c parameters in different proportions are related to the replacement of O by F. The chemical data determined an age of 1,838 +/- 145Ma. Gagarinite occurs associated to the core albite-enriched granite, in the lower part of the cryolitic zone B, where it could be a mineral ore REE and Y in addition to xenotime. Its composition is Na0,24Ca0,58Y1,01(ETR)0,39F5,81. It has abundant inclusions (<1 mm) of fluocerite (Ce0,53-0,66 La0,09-0,26 Nd0,08-0,26 Sm0,01-0,04 Eu0,01 Y0-0,03 F3,3-4,14) with crystallographic parameters (a= 5.97 to 5.99 and c= 3.50 to 3.53) modified compared to synthetic standards by the significant amounts of La and Nd in solid solution. The origin of these inclusions was investigated in detail by various techniques (TEM, SEM, FI). It is most likely formed by exsolution of REE with radius greater than that of Sm, from an initial metastable gagarinite (Na0.23Ca0.53REE0.99Y0.48F7.69). Waimirite is a new mineral that occurs associated with a kaolinite polytype in later veins. It is characterized as a Y fluoride [(REE, Y)F3] in which the predominant REE are the HREE (especially Dy); Ca and Na occur in small quantities. The tetrad effect (more frequent in the third tetra) occurs in the core albiteenriched granite, border albite-enriched granite, hypersolvus granite and in the massive cryolite deposit, and is associated with HREE enrichment in the late facies. In the core albiteenriched granite the total tetrad effect (TET) is 2.48 and the third tetra (NT3) is 1.87. Portions of this rock less enriched in REE have effect in the first tetra (ES1) of 1.34. Samples extremely rich in REE rarely present tetrad effect, meaning that this phenomenon is not only related with the abundance of these elements. There is no statistically significant correlation between tetrad effect and Eu and Ce anomalies, LREE / HREE and F.
16

Controle estrutural dos pegmatitos terras raras associados ao granito madeira, Mina de Pitinga, Amazonas, Brasil

Ronchi, Fernanda Claas January 2017 (has links)
Nós estudamos o controle estrutural dos veios de pegmatitos graníticos (tipo F-ETR-Li) associados à fácies albita granito (AEG) do granito Madeira (~1.83Ga). Esta fácies corresponde ao depósito, de classe mundial, de Sn-Nb-Ta-F (criolita) da mina de Pitinga. Atualmente, esses pegmatitos ricos em ETR (xenotima e gagarinita) são explorados junto com o minério disseminado, porém possuem potencial para exploração por lavra seletiva. Todos os pegmatitos possuem arranjo geométrico e mineralogia similares, o que sugere mesma fonte. Também possuem mineralogia igual à da encaixante e seu alojamento ocorreu na própria rocha parental. O arranjo geométrico dos pegmatitos foi controlado por estruturas contracionais frágeis (falhas inversas, leques de imbricação e cavalos). Os planos de falhas inversas (N320/60SW) serviram como condutos para o fluido que se alojou preferencialmente em fraturas horizontais distensivas. O arranjo geométrico bem definido dessas estruturas e o fato de que também há planos de falhas inversas sem pegmatitos demonstram que as fraturas que hospedam os pegmatitos não foram formadas pela pressão do fluido. A orientação das estruturas contracionais no AEG indica que ocorreu um transporte de SW para NE. Como este corpo possui pequena dimensão, resfriou-se rapidamente. Contudo, sua localização na crosta superior fria e a baixa temperatura solidus permitiram a formação dos pegmatitos. No nível estrutural em que se encontram os pegmatitos estudados, quando esses veios se alojaram, o AEG estava cristalizado e posicionado acima da profundidade crustal crítica, onde o estresse normal mínimo é vertical. / We study the structural control of pegmatites (F-REE-Li vein-type granite pegmatite) associated to the albite-enriched granite facies (AEG) of the Madeira A-type granite (~1.83 Ga). This facies corresponds to the Madeira world-class Sn-Nb-Ta-F (cryolite) deposit at the Pitinga mine. These REE-rich pegmatites (xenotime and gagarinite), presently exploited together with the disseminated ore, have potential to explotation by selective mining. They have a common geometric arrangement and share a same mineralogy, therefore they all originate from the same source. They have the same mineralogical composition of the host rock and their emplacement occurred in the parental rock itself. The geometric arrangement of the pegmatites is settled by contractional brittle structures (reverse faults, imbrication fans and horses). The reverse fault planes (~N320/60SW) were essentially the conduits for the fluid. The preferential sites for the pegmatites bodies were the horizontal tensile fractures. The well-marked geometric arrangement of the tectonic structures and the fact that there are also reverse faults planes without pegmatites show that the fractures that host the pegmatites were not formed by the fluid pressure. The orientation of the contractional structures in the AEG indicates a transport from SW to NE. With reduced surface dimensions, the AEG cooled fast, however its location in the cold upper crust and the low solidus temperature allowed pegmatites formation. At the structural level of the studied pegmatites, when these veins positioned, the AEG was crystallized in a position above the critical crustal depth, where minimum normal stress is vertical.
17

Controle estrutural dos pegmatitos terras raras associados ao granito madeira, Mina de Pitinga, Amazonas, Brasil

Ronchi, Fernanda Claas January 2017 (has links)
Nós estudamos o controle estrutural dos veios de pegmatitos graníticos (tipo F-ETR-Li) associados à fácies albita granito (AEG) do granito Madeira (~1.83Ga). Esta fácies corresponde ao depósito, de classe mundial, de Sn-Nb-Ta-F (criolita) da mina de Pitinga. Atualmente, esses pegmatitos ricos em ETR (xenotima e gagarinita) são explorados junto com o minério disseminado, porém possuem potencial para exploração por lavra seletiva. Todos os pegmatitos possuem arranjo geométrico e mineralogia similares, o que sugere mesma fonte. Também possuem mineralogia igual à da encaixante e seu alojamento ocorreu na própria rocha parental. O arranjo geométrico dos pegmatitos foi controlado por estruturas contracionais frágeis (falhas inversas, leques de imbricação e cavalos). Os planos de falhas inversas (N320/60SW) serviram como condutos para o fluido que se alojou preferencialmente em fraturas horizontais distensivas. O arranjo geométrico bem definido dessas estruturas e o fato de que também há planos de falhas inversas sem pegmatitos demonstram que as fraturas que hospedam os pegmatitos não foram formadas pela pressão do fluido. A orientação das estruturas contracionais no AEG indica que ocorreu um transporte de SW para NE. Como este corpo possui pequena dimensão, resfriou-se rapidamente. Contudo, sua localização na crosta superior fria e a baixa temperatura solidus permitiram a formação dos pegmatitos. No nível estrutural em que se encontram os pegmatitos estudados, quando esses veios se alojaram, o AEG estava cristalizado e posicionado acima da profundidade crustal crítica, onde o estresse normal mínimo é vertical. / We study the structural control of pegmatites (F-REE-Li vein-type granite pegmatite) associated to the albite-enriched granite facies (AEG) of the Madeira A-type granite (~1.83 Ga). This facies corresponds to the Madeira world-class Sn-Nb-Ta-F (cryolite) deposit at the Pitinga mine. These REE-rich pegmatites (xenotime and gagarinite), presently exploited together with the disseminated ore, have potential to explotation by selective mining. They have a common geometric arrangement and share a same mineralogy, therefore they all originate from the same source. They have the same mineralogical composition of the host rock and their emplacement occurred in the parental rock itself. The geometric arrangement of the pegmatites is settled by contractional brittle structures (reverse faults, imbrication fans and horses). The reverse fault planes (~N320/60SW) were essentially the conduits for the fluid. The preferential sites for the pegmatites bodies were the horizontal tensile fractures. The well-marked geometric arrangement of the tectonic structures and the fact that there are also reverse faults planes without pegmatites show that the fractures that host the pegmatites were not formed by the fluid pressure. The orientation of the contractional structures in the AEG indicates a transport from SW to NE. With reduced surface dimensions, the AEG cooled fast, however its location in the cold upper crust and the low solidus temperature allowed pegmatites formation. At the structural level of the studied pegmatites, when these veins positioned, the AEG was crystallized in a position above the critical crustal depth, where minimum normal stress is vertical.
18

Controle estrutural dos pegmatitos terras raras associados ao granito madeira, Mina de Pitinga, Amazonas, Brasil

Ronchi, Fernanda Claas January 2017 (has links)
Nós estudamos o controle estrutural dos veios de pegmatitos graníticos (tipo F-ETR-Li) associados à fácies albita granito (AEG) do granito Madeira (~1.83Ga). Esta fácies corresponde ao depósito, de classe mundial, de Sn-Nb-Ta-F (criolita) da mina de Pitinga. Atualmente, esses pegmatitos ricos em ETR (xenotima e gagarinita) são explorados junto com o minério disseminado, porém possuem potencial para exploração por lavra seletiva. Todos os pegmatitos possuem arranjo geométrico e mineralogia similares, o que sugere mesma fonte. Também possuem mineralogia igual à da encaixante e seu alojamento ocorreu na própria rocha parental. O arranjo geométrico dos pegmatitos foi controlado por estruturas contracionais frágeis (falhas inversas, leques de imbricação e cavalos). Os planos de falhas inversas (N320/60SW) serviram como condutos para o fluido que se alojou preferencialmente em fraturas horizontais distensivas. O arranjo geométrico bem definido dessas estruturas e o fato de que também há planos de falhas inversas sem pegmatitos demonstram que as fraturas que hospedam os pegmatitos não foram formadas pela pressão do fluido. A orientação das estruturas contracionais no AEG indica que ocorreu um transporte de SW para NE. Como este corpo possui pequena dimensão, resfriou-se rapidamente. Contudo, sua localização na crosta superior fria e a baixa temperatura solidus permitiram a formação dos pegmatitos. No nível estrutural em que se encontram os pegmatitos estudados, quando esses veios se alojaram, o AEG estava cristalizado e posicionado acima da profundidade crustal crítica, onde o estresse normal mínimo é vertical. / We study the structural control of pegmatites (F-REE-Li vein-type granite pegmatite) associated to the albite-enriched granite facies (AEG) of the Madeira A-type granite (~1.83 Ga). This facies corresponds to the Madeira world-class Sn-Nb-Ta-F (cryolite) deposit at the Pitinga mine. These REE-rich pegmatites (xenotime and gagarinite), presently exploited together with the disseminated ore, have potential to explotation by selective mining. They have a common geometric arrangement and share a same mineralogy, therefore they all originate from the same source. They have the same mineralogical composition of the host rock and their emplacement occurred in the parental rock itself. The geometric arrangement of the pegmatites is settled by contractional brittle structures (reverse faults, imbrication fans and horses). The reverse fault planes (~N320/60SW) were essentially the conduits for the fluid. The preferential sites for the pegmatites bodies were the horizontal tensile fractures. The well-marked geometric arrangement of the tectonic structures and the fact that there are also reverse faults planes without pegmatites show that the fractures that host the pegmatites were not formed by the fluid pressure. The orientation of the contractional structures in the AEG indicates a transport from SW to NE. With reduced surface dimensions, the AEG cooled fast, however its location in the cold upper crust and the low solidus temperature allowed pegmatites formation. At the structural level of the studied pegmatites, when these veins positioned, the AEG was crystallized in a position above the critical crustal depth, where minimum normal stress is vertical.
19

Alteração intempérica do depósito de Sn-Nb-Ta-(criolita, ETR, U, Th) madeira, Mina Pitinga (AM).

Alves, Marlon Andrek da Silva January 2016 (has links)
A dissertação versa sobre a lateritização do depósito Madeira que ocorre associado à fácies albita granito do granito Madeira (tipo A, ~ 1,82 Ga). O depósito Madeira situa-se na floresta amazônica, onde intemperismo químico é intenso e lateritização é um importante processo de formação de depósitos minerais. Este depósito representa um caso particular, onde a rocha-mãe é um depósito mineral; assim, mineralização primária e mineralização laterítica ocorrem no mesmo perfil. A rocha-mãe tem uma associação mineral incomum, que inclui quartzo, albita, k-feldspato, zircão, criolita (Na3AlF6), fluorita, polilitionite, riebeckita rica em Zn, F-anita rica em Zn, torita, cassiterita, pirocloro, columbita, xenotima, gagarinita- (Y), fluocerita-(Ce) e genthelvite. Uma característica importante da rocha é a sua riqueza em flúor (2 a 6% em peso), principalmente sob a forma de criolita ou fluroita na matriz. Inicialmente foram investigadas as alterações micromorfológicas destes minerais ao longo de perfis de intemperismo. Em seguida, os realizados estudos geoquímicos em perfis selecionados. Os dados químicos foram convertidos em proporções volumétricas para quantificar as variações nos teores de elementos em amostras com diferentes graus de lateritização, e foram realizados cálculos de balanço de massa tendo o Al como elemento de referência. Desta forma, foram obtidas muitas informações sobre os processos que atuaram na formação do perfil laterítico a partir do depósito Madeira. A rocha-mãe representava claramente um sistema aluminoso com quantidades mais baixas de Fe. A perda total de álcalis e perda parcial de SiO2 originou argilas cauliníticas. A razão molar de SiO2/Al2O3~2 foi adequada para a geração de minerais de argila aluminosos com estrutura 1:1, tais como a caulinita. Com a maior perda de SiO2 na parte superior do perfil ocorreu a formação de gibsita. Hematita é principal mineral de ferro formado porque o meio foi alcalino com alta razão OH/Fe (>2). A lixiviação de elementos alcalinos conduziu ao enriquecimento relativo de alguns elementos economicamente importantes, tais como Sn, Nb e ETR. No entanto, a distribuição de alguns metais, tais como o Pb, Zn e ETR, difere do padrão normalmente esperado no intemperismo, o que pode ser explicado por algumas características especiais da paragênese e pela alta atividade de F nas soluções, que influenciou os processos intempéricos de duas maneiras diferentes: intensa corrosão até mesmo de minerais muito resistentes e formação de complexos estáveis, especialmente com cátions duros, tais como os ETR. / The paper deals on the laterization of the Madeira deposit associated with the albite-enriched granite facies of the A-type Madeira granite (~1.82 Ga). The Madeira deposit is located in the Amazon rain forest, where chemical weathering is intensive and lateritization is a major process of ore deposit formation. This deposit represents a particular case, where the parent rock is an ore deposit; thus primary mineralization and lateritic mineralization occur in the same profile. The parent rock has an unusual mineral association, which includes quartz, albite, k-feldspar, zircon, cryolite (Na3AlF6), fluorite, polylithionite, Zn-rich riebeckite, Zn-F-rich annite, thorite, cassiterite, pyrochlore, columbite, xenotime, gagarinite-(Y), fluocerite-(Ce), and genthelvite. An important feature of the rock is the F richness (2 to 6% wt) mainly in the form of cryolite or fluorspar in the matrix. We first investigated the micromorphological changes of these minerals throughout the soil profile and then focused the geochemical studies in selected profiles. The chemical data were converted into volumetric proportions to quantify the variations in element contents in samples with different degrees of lateritization, and we performed mass balance calculations with Al as the reference element. In this way, we obtain many new constraints on the processes that formed the weathering profile from the Madeira deposit. The parental rock was a clearly aluminous system with lower amounts of Fe. The total loss of alkalis and partial loss of SiO2 created kaolinitic clay minerals. The SiO2/Al2O3 molar ratio ≈2 was suitable for generating aluminous clay minerals with 1:1 structures, such as kaolinite. Greater losses of SiO2 occurred and gibbsite formed at the top of the weathering profiles. Hematite formed as the main ferric mineral because the medium was alkaline with a high OH-/Fe ratio (> 2). The leaching of alkaline elements led to relative enrichment in some economically important elements, such as Sn, Nb, and REEs, in the lateritic profiles. However, the distribution of some of the metals, such as Pb, Zn, and REEs, in the weathering profile is very unusual and may be explained by some special characteristics of the paragenesis and the high activity of F in the solutions, which greatly influenced the weathering processes in two different ways. This halogen was responsible for the intense corrosion of even very resistent minerals and formed stable complexes, especially with hard cations such as REEs.
20

Evolução geológica da região de Pitinga (Amazonas) e suas implicações na gênese da mineralização de Sn-Nb-Ta-F (Y, ETR, Li) associada ao granito madeira

Costa, Clovis Fernando de Moura January 2011 (has links)
A jazida do granito Madeira, associada à fácies albita granito, é um depósito de classe mundial com minério disseminado de Sn, Nb, Ta e F (Y, ETR, Li, U, Th) e, em sua parte central, contém um depósito de criolita maciça com 10 Mt (teor de 38% de Na3AlF6). O objetivo do trabalho foi compreender que contexto geológico permitiu a formação desta associação rocha-minério única no mundo. Para tanto, foram efetuados estudos isotópicos (Sm-Nd, Rb-Sr e Pb-Pb) e estudos tectônicos, enfocando o granito Madeira, seus correlatos e as rochas regionais. Durante uma primeira fase extensional, formaram-se as rochas vulcânicas do Grupo Iricoumé (1.890 a 1881 Ma), constituindo um complexo de caldeiras, e os corpos graníticos associados da Suíte Intrusiva Mapuera, ambos gerados a partir de fontes mantélicas. Concomitantemente aos estágios finais do vulcanismo iniciou-se a sedimentação na bacia Urupi (possivelmente um rift), acompanhada por um segundo pico de vulcanismo há 1.825 Ma. Fluidos mantélicos migraram para a zona afetada pela extensão regional, ascenderam acompanhando as isotermas e iniciaram a fenitização da crosta. Na continuidade deste processo, durante uma segunda fase extensional, rochas até refratárias tornaram-se fusíveis e originaram 5 magmas diferentes, todos com assinatura de fonte crustal e mantélica, que se posicionaram, entre 1.839 e 1.824 Ma, em estruturas geradas na fase anterior, formando os 3 corpos graníticos da Suíte Madeira. Numa terceira fase tectônica, desta feita transtensiva, fluidos mantélicos, possivelmente de natureza carbonatítica, fenitizaram rochas de nível crustal mais alto, enriquecidas em Sn, e nelas introduziram F, Nb, Y, ETR, U e Th em concentrações anômalas. Da fusão destas rochas resultou o magma do albita granito que se alojou, há 1.822 Ma, dentro do granito Madeira, mas com uma orientação N-S discordante da orientação geral NE-SW do granito Madeira e da estrutura que o aloja. / The deposit of the Madeira granite, associated with albite granite facies is a world-class deposit with disseminated ore of Sn, Nb, Ta and F (Y, REE, Li, U, Th), and its central part contains a deposit of massive cryolite with 10 Mtons (containing 38% of Na3AlF6). The objective was to understand the geological context to the formation of ore-rock association unique in the world. Therefore isotopic studies were performed (Sm-Nd, Rb-Sr and Pb-Pb) and tectonic studies focusing on the Madeira granite, its related and regional rocks. During a first extensional phase volcanic rocks of the Iricoumé Group (1890 to 1881 Ma) was originated forming a caldera complex and granitic bodies associated with Mapuera Intrusive Suite, both generated from mantle sources. At the same time the final stages of volcanism began the sedimentation in Urupi basin (possibly a rift), followed by a second peak of volcanism in 1825 Ma ago. Mantle fluids migrated to the area affected by regional extension rose following the isotherms and started the fenitization crust. Continuing this process in a second extensional phase , rocks become refractory and fuses originating 5 different magmas, all with crustal signature and mantle source, which is positioned between 1839 and 1824 Ma, in structures generated in previous phase, forming 3 granitic bodies of Madeira suite . In a third tectonic phase,, this time transtensive, mantle fluid, possibly of a carbonatitic fenitizated rocks from higher crustal level , enriched in Sn, and introduced F, Nb, Y, REE , U and Th in anomalous concentrations. The fusion of these rocks resulted in the albite granite magma that has positioned, there in 1822 Ma, within the Madeira granite, but with a NS orientation ,discordant of the general NE-SW of Madeira granite and the structure that it was contained.

Page generated in 0.0797 seconds