• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 7
  • Tagged with
  • 30
  • 30
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Indium Bump Fabrication using Electroplating for Flip Chip Bonding

Sjödin, Saron Anteneh January 2015 (has links)
Hybrid pixel detectors are widely used in many fields, including military, environment, industry and medical treatment. When integrating such a detector, a vertical connection technique called flip-chip bonding is almost the only way to realize the high-density interconnection between each pixel detector to the read-out chip. Such bonding can offer high-density I/O and a short interconnect distance, which can make the resulting device show excellent performance. Electro deposition is a promising approach to enable a low cost and high yield bump bonding process, compared with conventional sputtering or evaporation which is currently utilized for small-scale production. Due to that, Indium bumping process using electroplating is selected, as a result of which indium bump arrays with a pitch of 220 μm and a diameter of 30 μm have been fabricated using a standard silicon wafer processing. UBM (under bump metallization) for indium bumping was Ti/Ni (300 Å/ 2000 Å). It helps to increase adhesion between the wafer and the bumps and also serves as an excellent diffusion barrier both at room temperature and at 200°C. The indium is electroplated, using an indium sulfamate plating bath, and then formed into bumps through a reflow process. The reflow is made on a 200°C hot plate with a continuous flow of nitrogen over the wafer. During the reflow the indium is melted and forms into bumps due to surface tension. All the corresponding procedural processing steps and results are incorporated in this paper.
2

Characterisation and beam test data analysis of 3D silicon pixel detectors for the ATLAS upgrade

Nellist, Clara January 2013 (has links)
3D silicon pixel detectors are a novel technology where the electrodes penetrate the sili- con bulk perpendicularly to the wafer surface. As a consequence the collection distance is decoupled from the wafer thickness resulting in a radiation hard pixel detector by design. Between 2010 and 2012, 3D silicon pixel detectors have undergone an intensive programme of beam test experiments. As a result, 3D silicon has successfully qualified for the ATLAS upgrade project, the Insertable B-Layer (IBL), which will be installed in the long-shutdown in 2013-14. This thesis presents selected results from these beam test studies with 3D sensors bonded to both current ATLAS readout cards (FE-I3) and newly developed readout cards for the IBL (FE-I4). 3D devices were studied using 4 GeV positrons at DESY and 120 GeV pions at the SPS at CERN. Measurements presented include tracking efficiency (of the whole sensor, the pixel and the area around the electrodes), studies of the active edge pixels of SINTEF devices and cluster size distributions as a function of incident angle for IBL 3D design sensors. A simulation of 3D silicon sensors in an antiproton beam test for the AEgIS experiment, with comparison to experimental results and a previous simulation, are also presented.
3

The Readout System for the ITk Pixel Demonstrator for the ATLAS High-Luminosity Upgrade

Buschmann, Eric 11 February 2020 (has links)
No description available.
4

Pixel Sensor Module Assembly Procedures for The CMS High Luminosity LHC Upgrade

Simran Sunil Gurdasani (9385172) 16 December 2020 (has links)
<p>The high luminosity phase of the LHC, poised to start taking data in 2027, aims to increase the instantaneous luminosity of the machine to 7.5 x 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>. This will make it possible for experiments at CERN to make higher precision measurements on known physics phenomenon as well as to search for “new physics”. However, this motivates the need for hardware upgrades at the various experiments in order to ensure compatibility with the HL-LHC. This thesis describes some of the efforts to upgrade the inner-most layers of the Compact Muon Solenoid, namely the CMS silicon pixel tracking detector. </p> <p>Silicon sensors used to track particles are installed in the detector as part of a pixel sensor module. Modules consist of a silicon sensor-readout chip assembly that is wire-bonded to an HDI, or High Density Interconnects to provide power and signals. </p> <p>As part of the upgrade, 2,541 modules need to be assembled delicately and identically with alignment error margins as low as 10 microns. Assembly will be across three production sites in clean rooms to avoid dust and humidity contamination.</p> <p>In addition, the modules need to survive high magnetic fields and extended close-range radiation as part of the HL-LHC.</p> <p>In line with this effort, new materials and assembly procedures able to sustain such damage are investigated. Techniques to assemble modules are explored, specifically precision placing of parts with a robotic gantry and techniques to protect wirebonds. This is followed by a discussion of the accuracy and repeatability.</p>
5

Rozpoznávání drah částic v pixelovém detektoru typu Timepix / Rozpoznávání drah částic v pixelovém detektoru typu Timepix

Čermák, Jakub January 2013 (has links)
In current particle physics field, the progressive detection technologies are used. The pixel detectors are one of them. These detectors are divided into small subdetectors (pixels), which allow viewing exact tracks of the detected particles. This thesis defines criteria for mathematical description of the shape of the particle tracks of different kinds (e-, γ, p, α, μ) and compares several methods used for a classification -neural networks, decision trees and others. The Pixa software was implemented to process the data measured by pixel detectors. This software implements the characteristics and classification methods and creates statistical and other physical results.
6

Modeling the Performance of a Hybrid Pixel Detector for Digital X-ray Imaging

del Risco Norrlid, Lilián January 2004 (has links)
<p>The development of digital detectors for X-ray imaging in medical diagnostics receives an increasing amount of attention. The detector under development at the Department of Radiation Sciences at Uppsala University is a hybrid pixel detector, which consists of a semiconductor sensor mounted onto a readout chip. The readout chip is capable of performing photon counting and has an externally adjustable threshold.</p><p>A simulation tool for the detector and a model applying the linear-systems transfer theory to X-ray hybrid pixel detectors have been developed. Also a characterization of the readout chip has been done. In order to estimate the potential of the detector for diagnostic radiology, we investigate the image quality using the spatial frequency dependent detective quantum efficiency (DQE). By means of the detector simulations, the influence of threshold setting, noise sources, level of exposure and charge sharing on the DQE have been studied. By means of the linear-systems theory, a single analytical expression is provided to obtain the DQE of a hybrid pixel detector.</p><p>The method developed in this thesis will make it possible to optimize a detector design according to a particular medical application. It will also permit modifications and new features to be included without having to construct a full detector system.</p>
7

DIXI – a Hybrid Pixel Detector for X-ray Imaging

Edling, Fredrik January 2004 (has links)
<p>Medical X-ray imaging is an important tool in diagnostic radiology. The ionising-radiation dose to the patient is justified by the clinical benefit of the examination. Nonetheless, detectors that operate at even lower doses and provide more information to the radiologist are desired. A hybrid pixel detector has the potential to provide a leap in detector technology as it incorporates a more advanced signal-processing capability than currently used detectors.</p><p>The DIXI digital detector is a hybrid pixel detector developed for X-ray imaging. It consists of a readout chip and a semiconductor sensor. The division in two parts makes it possible to optimise each part individually. The detector is divided into square pixels with a size of 270 x 270 μm2. DIXI has the ability to count single photons and every readout pixel has two embedded counters to allow the acquisition of two images close in time. A discriminator enables the selection of photons with energies above a preset threshold level.</p><p>The readout chip Angie has been developed and its performance has been evaluated in terms of noise, threshold variation and capability to perform energy weighted counting. Silicon sensors have been fabricated, and a control system for DIXI has been designed and built. An electroless process for deposition of Ni/Au bumps on the chip and sensor has been optimised as a preparation for the assembly of a complete detector, which is being assembled by flip-chip bonding using anisotropic conductive film.</p><p>A simulation library for the DIXI detector has been set up and results on the image quality are reported for different exposures and working conditions. A theoretical model for hybrid pixel detectors based on the cascaded linear system theory has been developed. The model can be used to investigate and optimise the detector for different detector configurations and operating conditions.</p>
8

Modeling the Performance of a Hybrid Pixel Detector for Digital X-ray Imaging

del Risco Norrlid, Lilián January 2004 (has links)
The development of digital detectors for X-ray imaging in medical diagnostics receives an increasing amount of attention. The detector under development at the Department of Radiation Sciences at Uppsala University is a hybrid pixel detector, which consists of a semiconductor sensor mounted onto a readout chip. The readout chip is capable of performing photon counting and has an externally adjustable threshold. A simulation tool for the detector and a model applying the linear-systems transfer theory to X-ray hybrid pixel detectors have been developed. Also a characterization of the readout chip has been done. In order to estimate the potential of the detector for diagnostic radiology, we investigate the image quality using the spatial frequency dependent detective quantum efficiency (DQE). By means of the detector simulations, the influence of threshold setting, noise sources, level of exposure and charge sharing on the DQE have been studied. By means of the linear-systems theory, a single analytical expression is provided to obtain the DQE of a hybrid pixel detector. The method developed in this thesis will make it possible to optimize a detector design according to a particular medical application. It will also permit modifications and new features to be included without having to construct a full detector system.
9

DIXI – a Hybrid Pixel Detector for X-ray Imaging

Edling, Fredrik January 2004 (has links)
Medical X-ray imaging is an important tool in diagnostic radiology. The ionising-radiation dose to the patient is justified by the clinical benefit of the examination. Nonetheless, detectors that operate at even lower doses and provide more information to the radiologist are desired. A hybrid pixel detector has the potential to provide a leap in detector technology as it incorporates a more advanced signal-processing capability than currently used detectors. The DIXI digital detector is a hybrid pixel detector developed for X-ray imaging. It consists of a readout chip and a semiconductor sensor. The division in two parts makes it possible to optimise each part individually. The detector is divided into square pixels with a size of 270 x 270 μm2. DIXI has the ability to count single photons and every readout pixel has two embedded counters to allow the acquisition of two images close in time. A discriminator enables the selection of photons with energies above a preset threshold level. The readout chip Angie has been developed and its performance has been evaluated in terms of noise, threshold variation and capability to perform energy weighted counting. Silicon sensors have been fabricated, and a control system for DIXI has been designed and built. An electroless process for deposition of Ni/Au bumps on the chip and sensor has been optimised as a preparation for the assembly of a complete detector, which is being assembled by flip-chip bonding using anisotropic conductive film. A simulation library for the DIXI detector has been set up and results on the image quality are reported for different exposures and working conditions. A theoretical model for hybrid pixel detectors based on the cascaded linear system theory has been developed. The model can be used to investigate and optimise the detector for different detector configurations and operating conditions.
10

Commissioning of the Atlas pixel detector at Run 2 of the LHC, and search for supersymmetric particles with two same-sign leptons or three leptons in the final state / Mise en oeuvre du détecteur à pixels d'Atlas lors du Run 2 du LHC et recherche de particules supersymétriques dans les états finals à deux leptons de même signe et à trois leptons

Alstaty, Mahmoud Ibrahim 07 November 2017 (has links)
Le LHC, ATLAS, le détecteur à pixels et l’IBL sont décrits dans la première partie de ce mémoire. La mise en oeuvre du détecteur à pixels muni de sa nouvelle couche grâce à l’acquisition de rayons cosmiques juste avant le démarrage du Run 2 du LHC est ensuite présentée. L’analyse comprend l’étude des propriétés des amas de pixels allumés par le passage des rayons cosmiques, ainsi que la comparaison entre les deux technologies de compteurs présentes dans la nouvelle couche, les compteurs planaires et les compteurs 3D utilisés pour la première fois auprès d’un collisionneur. Ces études ont permis de valider les logiciels de reconstruction et d’améliorer la simulation de la nouvelle couche. Les produits d’ionisation créés dans les compteurs par le passage de particules chargées sont déviés de leurs trajectoires naturelles le long du champ électrique des jonctions, par le champ magnétique uniforme dans lequel est plongé le trajectographe d’ATLAS. L’angle de la déviation est appelé angle de Lorentz. La mesure de cet angle est essentielle car il affecte la position mesurée. Cette mesure a été réalisée pour toutes les couches, ainsi que la variation de l’angle de Lorentz en fonction de la température. A la fin du Run 1, aucun excès n’a été observé par-dessus les prédictions du Modèle Standard, et des limites inférieures sur les masses de particules supersymétriques en ont été déduites. Ces limites ont été étendues avec l’analyse montrée ici. Le gluino est ainsi plus lourd que 1.87TeV, tandis que la masse du squark b devrait être plus grande que 700 GeV, sous des hypothèses simplificatrices. Ces résultats constituent des contraintes supplémentaires pour la supersymétrie. / In the first part of this thesis, the LHC, ATLAS, the Pixel Detector and the IBL are all reviewed. Afterwards, the analysis of first cosmic data collected by the ATLAS Detector after the IBL insertion is presented, as part of the Pixel and IBL commissioning before Run 2 started. The analysis included the study of the Pixel clusters properties, and making comparisons between the two different technologies used in the IBL sensors: the Planar type, and the 3D type which has been used for the first time in a collider experiment. Analyzing the Pixel clusters properties is important to study the detector response after the IBL insertion, in order to insure utilizing the ultimate capabilities of the detector, and to achieve better resolutions for the measurements. The Standard Model (SM) of particle physics describes physical phenomena in the fundamental level with great success. However, it suffers from several shortcomings; for instance, it has no candidate for the dark matter, and it has no solution for the gauge hierarchy problem, motivating the search for new physics beyond the SM theories. On of those theories is Supersymmetry(SUSY), which occupies a primer place in the LHC physics program. At the end of Run-1, no significant excess in data over the SM prediction is observed and limits on the supersymmetric particle masses are set. With this analysis, which is basically an extension of the Run 1 analysis, those exclusion limits are extended and the gluino masses are excluded up to 1.87 TeV, while the sbottom mass should be above 700 GeV when using simplified assumptions. These results provide new constraints on natural SUSY models.

Page generated in 0.0657 seconds