• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental investigations into high-altitude relight of a gas turbine

Read, Robert William January 2008 (has links)
This thesis describes experiments to investigate high-altitude relight of a lean direct injection (LDI) combustor. The features that make LDI technology less polluting in terms of NOx compared to conventional combustors are expected to impede relight performance. Therefore an improved understanding of ignition behaviour is required to ensure that stringent relight requirements can be satisfied. Realistic operating conditions are simulated in a ground-based test facility. The application of laser diagnostics presents particular difficulties due to the large quantities ofliquid fuel that impinge on the combustor walls during relight. Advances are made in the application of planar laser-induced fluorescence (PLIF) to monitor fuel placement in a combustor under these conditions. A novel apparatus is developed to deliver a laser sheet to the combustion chamber while protecting all optical surfaces from contamination. The PLIF images are compared with the cold flow field obtained from CFD modelling. These results indicate that fuel becomes trapped inside the central recirculation zone in highconcentrations. High-speed flame imaging performed simultaneously with the PLIF measurements provides important insights into the motion and breakup of flame during relight. An algorithm developed to track the flame activity reveals that the initial spark kernel is convected downstream, before breaking apart and moving upstream towards a recovery origin close to the fuel injector. Analysis of many ignition events has revealed several distinct modes of ignition failure.
2

Experimental Characterization of Instability in Gaseous Detonation

Mark Daniel Frederick (17583648) 08 December 2023 (has links)
<p dir="ltr">Examination of gaseous detonation flow-fields represents a unique experimental challenge. High-speed shock interaction within a reactive mixture manifests combustion modes across a range of spatial-temporal scales. While the kinetics along the leading front are often characterized by adiabatic compression, simultaneously strong shear induces turbulent mixing in downstream portions of the flow. This all occurs within a wave structure typically traveling near 2000 m/s. To advance fundamental understanding, high-resolution diagnostics are required to make quantitative, time-resolved measurements of the unsteady detonation propagation.</p><p dir="ltr">In this work, detonations are experimentally studied in a single-shot, narrow channel using non-intrusive optical diagnostics. The change in wave structure between mixtures fueled by methane and natural gas was characterized using 175 kHz schlieren and CH* chemiluminescence imaging. The effect of the higher order alkanes in natural gas is speed up the reaction kinetics and produce a wave structure with smaller spatial scales and in which reaction occurs closer to the leading shock front.</p><p dir="ltr">A schlieren system operating at a rate of 5 MHz is then implemented to resolve the spatial-temporal oscillation of the leading shock front. These images are used to compute the lead shock normal speed, which enables a statistical analysis of the oscillating shock velocity. The moments of distribution are compared with computed instability levels of sixteen mixtures and a positive correlation is found. Simultaneous chemiluminescence is used to create joint distribution of shock speed and chemical length scale, which are then compared with the quasi-steady reaction zone solution.</p><p dir="ltr">Experiments are performed with highly nitrogen diluted mixtures of methane and oxygen to examine specific flow features. Different regimes of transverse wave reactivity are observed, from nonreactive to detonative. The transverse detonation wave structure is modeled using oblique shock relations and good agreement is found. The chemical length scales within the configuration are compared to the relevant expansion scales to explain the observed near-steady propagation. Distinct reactive processes following transverse wave collision are also captured. In one instance an explosion immediately occurs, while in the other a reactive gas jet grows from the point of collision. An unsteady reaction zone model is applied to understand the reaction mode within the jet.</p><p dir="ltr">Lastly, 300 kHz OH PLIF is performed to study small scale and weak reaction structures within the flow. The evolution of deflagrative burning mechanisms becomes resolvable using this technique, which highlights the benefit of its use.</p>
3

Axially Homogeneous Turbulent Convection at High Rayleigh Numbers : Scaling Laws for Flux and Spectra

Pawar, Shashikant S January 2015 (has links) (PDF)
Natural turbulent convection studies encompass a wide range of flows occurring in nature, for example, atmospheric and oceanic flows, con-vection in the Earth’s mantle, convection in the stars and also in many engineering applications. Rayleigh-Benard convection (RBC), i.e. con-vection in a horizontal fluid layer confined between two plates with a temperature differential maintained across them, has been a proto-type problem in the studies of turbulent natural convection. Many small scale and global features of the flow in the turbulent regime of RBC are known, yet the flow dynamics is not fully understood, es-pecially at high Rayleigh numbers (Ra). Present work comprises of experimental investigations of a different type of flow, high Rayleigh number turbulent convection in a long vertical tube (abbreviated as tube convection or TC). The tube of aspect ratio (length to diameter) of about 10, open at both the ends interconnects two large tanks. The flow driven by an unstable density difference created between the two tanks, has some unique features, different from RBC. The net flow at any tube cross-section is zero and the time averages of the velocities, the Reynolds shear stress and the mean shear are also zero. Turbu-lent energy production is therefore solely due to buoyancy. The flow is axially homogeneous and axisymmetric. In the homogeneous region, the mean density gradient is linear. Rayleigh number in TC is conve-niently defined based on the mean (linear) density gradient (denoted by Rag). Two sets of experiments are carried out. In one set of experiments, the density difference is created using brine and fresh water and in another set, it is created using heat. The ranges of Rag achieved are 3 × 108 < Rag < 8 × 109 in the experiments using salt (Schmidt number, Sc ≈ 600) and 5 × 104 < Rag < 5 × 106 in the experiments using heat (Prandtl number, P r ≈ 6). From the measured salt and heat fluxes in both the sets of experiments, the non dimensional flux 1 1 scaling above a certain value of Rag is obtained as N ug ∼ Rag2 P r 2 and from the velocity measurements in the experiments using salt, the 1 Reynolds number scaling is obtained as Re ∼ Rag2 P r− 12 . Both these are as per the predicted scalings by the mixing length model proposed by Arakeri et al. (2000) for high Rag convection in the vertical tube. The flux scaling N u ∼ (RaP r)2 , also known as the ‘ultimate regime’ of convection, expected at very high Ra but not yet observed in the experiments in classical RBC, is easily achieved in TC at relatively lower values of Ra. The fluxes and Reynolds numbers in TC are orders of magnitude higher as compared to those obtained in RBC for similar values of Ra and P r. In the lower range of Rag values for P r ≈ 6, a transition to a new flux scaling, N u ∼ (RaP r)0.29 is found. Similar transitions are also found to be present in the results of Tovar (2002) for Sc ≈ 600 and in the DNS results of Schmidt et al. (2012) for P r = 1, at different values of Rag. Collecting all these data, it is shown that the transition occurs at a fixed Grashof number of 1.6 × 105, independent of P r. Velocity measurements are carried out using particle image velocime-try (PIV) in the salt experiments. Kinetic energy spectra computed from the velocity fields are presented for the locations from the tube axis to the wall, for the lowest and the highest values of Rag achieved in the experiments. The spatial energy spectrum of lateral velocity at the tube axis follows Kolmogorov-Obukhov (KO) scaling (−5/3 scaling exponent) while the spatial spectrum of longitudinal velocity shows a scaling slightly higher than −5/3 but lower than −11/5 (the Bolgiano-Obukhov (BO) scaling). The scalar spectra is computed from the concentration fields obtained from planar laser induced fluorescence (PLIF) in the experiments using salt, and also from the temperature measurements from the experiments using heat. Both the concentra-tion and temperature fluctuations spectra show some evidence of dual scaling - BO scaling (−7/5 scaling exponent) in the inertial subrange followed by Obukhov-Corrsin (OC) scaling (−5/3 scaling exponent) over a narrow range of scales. Light propagation through the buoyancy driven turbulent flow in TC has also been experimentally investigated. Light propagation through convective turbulence is encountered in many situations. In some cases e.g. in observational astronomy it is undesirable, while in some other cases it is useful, e.g. in remote sensing of meteorological parameters. In the present study, light intensity and angle of arrival fluctuations in a parallel beam of light are measured. Laser shadowgraphy is used in the intensity measurements while the angle of arrival is obtained by measuring deflections of narrow laser beams, created by passing collimated laser light through a mask having equispaced grid of holes. Background oriented schlieren (BOS) measurements have also been carried out to obtain the displacements, which are proportional to the angle of arrivals. The equations for frequency spectrum of intensity and angle of arrival from the literature, developed for isotropic, ho-mogeneous turbulent media, are modified for the flow in the present case and the asymptotic scalings for high and low frequency ranges are obtained. The scalings in the frequency spectra computed from the measurements of intensity and angle of arrival fluctuations are com-pared with the obtained asymptotic scalings. The results from the present work are also compared with results from studies in the atmo-sphere and lab experiments.
4

Study Of Liquid Fuel Film Transport And Its Effect On Cold Start Hydrocarbon Emissions In A Carburetted Engine

Tewari, Sumit 08 1900 (has links) (PDF)
The present work is concerned with fundamental studies on the liquid fuel transport in the intake manifold of small carburetted engines. This work is motivated by the need for development of technologies to meet the stringent cold-start emission norms that are to be prescribed for two-wheelers in particular. More specifically, visualization studies conducted in a transparent manifold made of quartz in a small four-stroke 110-cc two-wheeler engine have shown the presence of gasoline films on the walls of the inlet manifold under cold start conditions. Advanced Laser diagnostic techniques such as Planar Laser Induced Fluorescence (PLIF) have been utilized to measure the thickness of the fuel films. The Sauter Mean Diameter for the fuel droplets at the carburettor exit is measured using Laser Shadowgraphy technique. It is observed that the films are present both at idling conditions and under load. This large amount of liquid fuel entering the engine leads to incomplete combustion and higher emissions of unburned hydrocarbons. A detailed analysis of the effects of heating the inlet manifold has been performed. The potential of this manifold heating strategy in reducing hydrocarbon emissions has been assessed and found to be promising. In addition, a need of proper control of the fuel exiting the carburettor is shown to reduce emissions and increase fuel efficiency.
5

Development and Application of Burst-Mode Planar Laser Diagnostics for Detonating and Hypersonic Flows

Austin M Webb (17543874) 04 December 2023 (has links)
<p dir="ltr">Burst-mode lasers and burst-mode optical parametric oscillators (OPOs) are applied and developed for planar laser induced fluorescence (PLIF) measurements of key species for high-speed combustion measurements. OH-PLIF in the rotating detonation engine was performed for the first time at wave structure visualization in two different planes and was 10 times faster than any other burst mode OH-PLIF measurements at the time. The same system was used to perform another OH-PLIF experiment at 1 MHz for ~200 pulses to compare key features of the detonation wave structure with computational fluid dynamic simulations and a fundamental detonation tube experiment. The system was also used for seedless velocity measurements in the exhaust by tracking a pocket of OH with a technique called FLASH. A similar OPO was built, aligned, and tuned to perform 1 MHz NO PLIF in a Mach 10 hypersonic tunnel to visualize second mode instabilities and calculate the frequency in the boundary layer transition of a 7-degree cone. A high-efficiency OPO was developed and characterized utilizing the KTP crystal to provide narrow bandwidth pulses for the fluorescence of multiple species. The OPO was pumped at repetition rates up to 1 MHz and was calculated to have a 1.9% UV efficiency from the fundamental 1064 nm output. This is 3 – 5 times increase in efficiency from previous custom and commercial built OPOs. The OPO was applied to the RDC for OH PLIF in the combustor channel and NO PLIF for injector dynamics and response studies. Lastly, a burst-mode laser was used to perform LII on the post detonation blast flow field to measure explosively generated soot. The data was taken at 1 MHz and compared and corrected with a separate set of experiments and computational simulations.</p>
6

Experimental investigation of multi-component jets issuing from model pipeline geometries with application to hydrogen safety

Soleimani nia, Majid 21 December 2018 (has links)
Development of modern safety standards for hydrogen storage infrastructure requires fundamental insight into the physics of buoyant gas dispersion into ambient air. Also, from a practical engineering stand-point, flow patterns and dispersion of gas originating from orifices in the side wall of circular pipe or storage tank need to be studied. In this thesis, novel configurations were considered to investigate the evolution of turbulent jets issuing from realistic pipeline geometries. First, the effect of jet densities and Reynolds numbers on vertical jets were investigated, as they emerged from the side wall of a circular pipe, through a round orifice. The resulting jet flow was thus issued through a curved surface from a source whose original velocity components were nearly perpendicular to the direction of the ensuing jets. Particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques were employed simultaneously to provide instantaneous and time-averaged flow fields of velocity and concentration. The realistic flow arrangement resulted in an asymmetric flow pattern and a significant deflection from the vertical axis of jets. The deflection was influenced by buoyancy, where heavier gases deflected more than lighter gases. These realistic jets experienced faster velocity decay, and asymmetric jet spreading compared to round jets due to significant turbulent mixing in their near field. In addition to that, horizontal multi-component jets issuing from a round orifice on the side wall of a circular tube were also investigated experimentally by the means of simultaneous velocity and concentration measurements. A range of Reynolds numbers and gas densities were considered to study the effects of buoyancy and asymmetry on the resulting flow structure. The realistic pipeline jets were always exhibited an asymmetry structure and found to deflect about the jet's streamwise axis in the near field. In the far field, the buoyancy dominated much closer to the orifice than expected in the axisymmetric round jet due to the realistic leak geometry along with the pipeline orientation considered in this study. In general, significant differences were found between the centreline trajectory, spreading rate, and velocity decay of conventional horizontal round axisymmetric jets issuing through flat plates and the pipeline leak-representative jets considered in the present study. Finally, the dispersion of turbulent multi-component jets issuing from high-aspect-ratio slots on the side wall of a circular tube were studies experimentally by employing simultaneous PIV and PLIF techniques. Two transversal & longitudinal oblong geometries in respect to the longitudinal axes of the tube , and with an aspect ratio of 10 were considered in this study. Both horizontal and vertical orientations along with broad range of Reynolds numbers and gas densities were considered to investigate the effects of buoyancy and asymmetry on the resulting flow structure. The ensuing jets were found to deflect along the jet streamwise axis, once more, due to the realistic pipeline leak-representative configuration. It was also found that increases in aspect ratio of these realistic jets caused a reduction in the angle of deflection, jet centreline decay rates and the width growth on both velocity and scalar fields compared to their round jets counterparts, most notably in the far field. These findings indicate that conventional jets (those that are issuing through flat surfaces) assumptions are inadequate to predict gas concentration, entrainment rates and, consequently, the extent of the flammability envelope of realistic gas leaks. Thus, extreme caution is required when using conventional jet assumptions to describe the physics of a buoyant jet emitted from realistic geometries. / Graduate

Page generated in 0.0813 seconds