• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical analysis of networks and biophysical systems of complex architecture

Valba, Olga 15 October 2013 (has links) (PDF)
Complex organization is found in many biological systems. For example, biopolymers could possess very hierarchic structure, which provides their functional peculiarity. Understating such, complex organization allows describing biological phenomena and predicting molecule functions. Besides, we can try to characterize the specific phenomenon by some probabilistic quantities (variances, means, etc), assuming the primary biopolymer structure to be randomly formed according to some statistical distribution. Such a formulation is oriented toward evolutionary problems.Artificially constructed biological network is another common object of statistical physics with rich functional properties. A behavior of cells is a consequence of complex interactions between its numerous components, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond and to adapt to changing environment. Recent theoretical advances allow us to describe cellular network structure using graph concepts to reveal the principal organizational features shared with numerous non-biological networks.The aim of this thesis is to develop bunch of methods for studying statistical and dynamic objects of complex architecture and, in particular, scale-free structures, which have no characteristic spatial and/or time scale. For such systems, the use of standard mathematical methods, relying on the average behavior of the whole system, is often incorrect or useless, while a detailed many-body description is almost hopeless because of the combinatorial complexity of the problem. Here we focus on two problems.The first part addresses to statistical analysis of random biopolymers. Apart from the evolutionary context, our studies cover more general problems of planar topology appeared in description of various systems, ranging from gauge theory to biophysics. We investigate analytically and numerically a phase transition of a generic planar matching problem, from the regime, where almost all the vertices are paired, to the situation, where a finite fraction of them remains unmatched.The second part of this work focus on statistical properties of networks. We demonstrate the possibility to define co-expression gene clusters within a network context from their specific motif distribution signatures. We also show how a method based on the shortest path function (SPF) can be applied to gene interactions sub-networks of co-expression gene clusters, to efficiently predict novel regulatory transcription factors (TFs). The biological significance of this method by applying it on groups of genes with a shared regulatory locus, found by genetic genomics, is presented. Finally, we discuss formation of stable patters of motifs in networks under selective evolution in context of creation of islands of "superfamilies".
2

Statistical analysis of networks and biophysical systems of complex architecture / L'analyse statistique des réseaux et des systèmes biophysiques de l'architecture complexe

Valba, Olga 15 October 2013 (has links)
De nombreux systèmes biologiques présentent une organisation complexe. Par exemple, les biopolymères peuvent posséder une structure très hiérarchisée responsable de leur fonction particulière. Comprendre la complexité de cette organisation permet de décrire des phénomènes biologiques et de prédire les fonctions des molécules. En outre, en supposant que la structure primaire du polymère est formée aléatoirement, nous pouvons essayer de caractériser ce phénomène par des grandeurs probabilistes (variances, moyennes, etc). Cette formulation est propre aux problèmes d'évolution.Les réseaux biologiques sont d'autres objets communs de la physique statistique possédant de riches propriétés fonctionnelles. Pour décrire un mécanisme biologique, on utilise différents types de réseaux biomoléculaires. Le développement de nouvelles approches peut nous aider à structurer, représenter et interpréter des données expérimentales, comprendre les processus cellulaires et prédire la fonction d'une molécule.L'objectif de cette thèse est de développer des méthodes pour l'étude d'objets statiques ou dynamiques, ayant une architecture complexe. Ici, nous nous intéressons à deux problèmes.La première partie est consacrée à l'analyse statistique des biopolymères aléatoires. Nous étudions une transition de phase présente dans les séquences aléatoires de l'ARN. On met alors en évidence deux modes : le régime où presque toutes les bases qui composent l'ARN sont couplées et la situation où une fraction finie de ces bases restent non complémentaires.La deuxième partie de cette thèse se concentre sur les propriétés statistiques des réseaux. Nous développons des méthodes pour l'identification d'amas de gènes co-expressifs sur les réseaux et la prédiction de gènes régulateurs novateurs. Pour cela, nous utilisons la fonction du plus court chemin et l'analyse du profil des motifs formés par ces amas. Ces méthodes ont pu prédire les facteurs de transcription impliqués dans le processus de longévité. Enfin, nous discutons de la formation de motifs stables sur les réseaux due à une évolution sélective. / Complex organization is found in many biological systems. For example, biopolymers could possess very hierarchic structure, which provides their functional peculiarity. Understating such, complex organization allows describing biological phenomena and predicting molecule functions. Besides, we can try to characterize the specific phenomenon by some probabilistic quantities (variances, means, etc), assuming the primary biopolymer structure to be randomly formed according to some statistical distribution. Such a formulation is oriented toward evolutionary problems.Artificially constructed biological network is another common object of statistical physics with rich functional properties. A behavior of cells is a consequence of complex interactions between its numerous components, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond and to adapt to changing environment. Recent theoretical advances allow us to describe cellular network structure using graph concepts to reveal the principal organizational features shared with numerous non-biological networks.The aim of this thesis is to develop bunch of methods for studying statistical and dynamic objects of complex architecture and, in particular, scale-free structures, which have no characteristic spatial and/or time scale. For such systems, the use of standard mathematical methods, relying on the average behavior of the whole system, is often incorrect or useless, while a detailed many-body description is almost hopeless because of the combinatorial complexity of the problem. Here we focus on two problems.The first part addresses to statistical analysis of random biopolymers. Apart from the evolutionary context, our studies cover more general problems of planar topology appeared in description of various systems, ranging from gauge theory to biophysics. We investigate analytically and numerically a phase transition of a generic planar matching problem, from the regime, where almost all the vertices are paired, to the situation, where a finite fraction of them remains unmatched.The second part of this work focus on statistical properties of networks. We demonstrate the possibility to define co-expression gene clusters within a network context from their specific motif distribution signatures. We also show how a method based on the shortest path function (SPF) can be applied to gene interactions sub-networks of co-expression gene clusters, to efficiently predict novel regulatory transcription factors (TFs). The biological significance of this method by applying it on groups of genes with a shared regulatory locus, found by genetic genomics, is presented. Finally, we discuss formation of stable patters of motifs in networks under selective evolution in context of creation of islands of "superfamilies".
3

Dynamic cavity method and problems on graphs / Méthode de cavité dynamique et problèmes sur des graphes

Lokhov, Andrey Y. 14 November 2014 (has links)
Un grand nombre des problèmes d'optimisation, ainsi que des problèmes inverses, combinatoires ou hors équilibre qui apparaissent en physique statistique des systèmes complexes, peuvent être représentés comme un ensemble des variables en interaction sur un certain réseau. Bien que la recette universelle pour traiter ces problèmes n'existe pas, la compréhension qualitative et quantitative des problèmes complexes sur des graphes a fait des grands progrès au cours de ces dernières années. Un rôle particulier a été joué par des concepts empruntés de la physique des verres de spin et la théorie des champs, qui ont eu beaucoup de succès en ce qui concerne la description des propriétés statistiques des systèmes complexes et le développement d'algorithmes efficaces pour des problèmes concrets.En première partie de cette thèse, nous étudions des problèmes de diffusion sur des réseaux, avec la dynamique hors équilibre. En utilisant la méthode de cavité sur des trajectoires dans le temps, nous montrons comment dériver des équations dynamiques dites "message-passing'' pour une large classe de modèles avec une dynamique unidirectionnelle -- la propriété clef qui permet de résoudre le problème. Ces équations sont asymptotiquement exactes pour des graphes localement en arbre et en général représentent une bonne approximation pour des réseaux réels. Nous illustrons cette approche avec une application des équations dynamiques pour résoudre le problème inverse d'inférence de la source d'épidémie dans le modèle "susceptible-infected-recovered''.Dans la seconde partie du manuscrit, nous considérons un problème d'optimisation d'appariement planaire optimal sur une ligne. En exploitant des techniques de la théorie de champs et des arguments combinatoires, nous caractérisons une transition de phase topologique qui se produit dans un modèle désordonné simple, le modèle de Bernoulli. Visant une application à la physique des structures secondaires de l'ARN, nous discutons la relation entre la transition d'appariement parfait-imparfait et la transition de basse température connue entre les états fondu et vitreux de biopolymère; nous proposons également des modèles généralisés qui suggèrent une correspondance exacte entre la matrice des contacts et la séquence des nucléotides, permettant ainsi de donner un sens à la notion des alphabets effectifs non-entiers. / A large number of optimization, inverse, combinatorial and out-of-equilibrium problems, arising in the statistical physics of complex systems, allow for a convenient representation in terms of disordered interacting variables defined on a certain network. Although a universal recipe for dealing with these problems does not exist, the recent years have seen a serious progress in understanding and quantifying an important number of hard problems on graphs. A particular role has been played by the concepts borrowed from the physics of spin glasses and field theory, that appeared to be extremely successful in the description of the statistical properties of complex systems and in the development of efficient algorithms for concrete problems.In the first part of the thesis, we study the out-of-equilibrium spreading problems on networks. Using dynamic cavity method on time trajectories, we show how to derive dynamic message-passing equations for a large class of models with unidirectional dynamics -- the key property that makes the problem solvable. These equations are asymptotically exact for locally tree-like graphs and generally provide a good approximation for real-world networks. We illustrate the approach by applying the dynamic message-passing equations for susceptible-infected-recovered model to the inverse problem of inference of epidemic origin. In the second part of the manuscript, we address the optimization problem of finding optimal planar matching configurations on a line. Making use of field-theory techniques and combinatorial arguments, we characterize a topological phase transition that occurs in the simple Bernoulli model of disordered matching. As an application to the physics of the RNA secondary structures, we discuss the relation of the perfect-imperfect matching transition to the known molten-glass transition at low temperatures, and suggest generalized models that incorporate a one-to-one correspondence between the contact matrix and the nucleotide sequence, thus giving sense to the notion of effective non-integer alphabets.

Page generated in 0.0629 seconds