• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Implementation of Broadband Internal Planar Monopole Antennas for Mobile Handsets

Shen, Chao-An 14 October 2005 (has links)
An internal small antenna usually suffers from degradation in performance of impedance bandwidth and radiation patterns. In this thesis, we design and fabricate a broadband interior type planar monopole with an omni-directional radiation pattern over a wide operation band using a slant feeding strip. It has a measured impedance bandwidth about 465MHz with center frequency at 1.66GHz (1427 ¡V 1892MHz) and the maximum cross polarization level about -13dB at 1800MHz, which is GSM1800 band in mobile communications. A modified design is an interior planar monopole with a slant slit. It has a measured impedance bandwidth about 455MHz with center frequency at 1.71GHz (1487 ¡V 1942MHz), including GSM1800 and PCS1900 band, and the maximum cross polarization level about -15dB at 1800MHz. The antennas have the dimensions of 40mm*15mm which occupies a small size on the system board and they are suitable to be mounted within the mobile handset device.
2

Dual Wideband Planar Monopole Antennas for Wireless Network Applications

Pan, Chien-Yuan 18 July 2007 (has links)
This dissertation presents four dual-band printed monopole antennas. There are three printed monopole antennas operating in 2.4 GHz and 5.2/5.8 GHz WLAN bands, and a dual wideband printed monopole operating applies in 2.4/5.2/5.8 GHz WLAN bands and 2.5/3.5/5.5 GHz WiMAX bands. The proposed antennas mainly use two approaches to achieve dual-band and dual wideband operations. The first method uses two different resonant paths in radiating monopole to excite two desired operating frequencies. The proposed configuration using the first method is a printed G-shaped monopole antenna. The second method places the conductor-backed plane on the other side of the radiated monopole to perturb its resonant behaviors for enhancing impedance bandwidth. Three configurations using the second method are proposed. The one with the best wideband performance is a printed rectangular monopole antenna with a trapezoid conductor-backed plane. Measured results for the proposed antennas show satisfactory performances and good agreement with the simulated results.
3

Model and design of small compact dielectric resonator and printed antennas for wireless communications applications : model and simulation of dialectric resonator (DR) and printed antennas for wireless applications : investigations of dual band and wideband responses including antenna radiation performance and antenna design optimization using parametric studies

Elmegri, Fauzi O. M. January 2015 (has links)
Dielectric resonator antenna (DRA) technologies are applicable to a wide variety of mobile wireless communication systems. The principal energy loss mechanism for this type of antenna is the dielectric loss, and then using modern ceramic materials, this may be very low. These antennas are typically of small size, with a high radiation efficiency, often above 95%; they deliver wide bandwidths, and possess a high power handling capability. The principal objectives of this thesis are to investigate and design DRA for low profile personal and nomadic communications applications for a wide variety of spectrum requirements: including DCS, PCS, UMTS, WLAN, UWB applications. X-band and part of Ku band applications are also considered. General and specific techniques for bandwidth expansion, diversity performance and balanced operation have been investigated through detailed simulation models, and physical prototyping. The first major design to be realized is a new broadband DRA operating from 1.15GHz to 6GHz, which has the potential to cover most of the existing mobile service bands. This antenna design employs a printed crescent shaped monopole, and a defected cylindrical DRA. The broad impedance bandwidth of this antenna is achieved by loading the crescent shaped radiator of the monopole with a ceramic material with a permittivity of 81. The antenna volume is 57.0  37.5  5.8 mm3, which in conjunction with the general performance parameters makes this antenna a potential candidate for mobile handset applications. The next class of antenna to be discussed is a novel offset slot-fed broadband DRA assembly. The optimised structure consists of two asymmetrically located cylindrical DRA, with a rectangular slot feed mechanism. Initially, designed for the frequency range from 9GHz to 12GHz, it was found that further spectral improvements were possible, leading to coverage from 8.5GHz to 17GHz. Finally, a new low cost dual-segmented S-slot coupled dielectric resonator antenna design is proposed for wideband applications in the X-band region, covering 7.66GHz to 11.2GHz bandwidth. The effective antenna volume is 30.0 x 25.0 x 0.8 mm3. The DR segments may be located on the same side, or on opposite sides, of the substrate. The end of these configurations results in an improved diversity performance.
4

Model and design of small compact dielectric resonator and printed antennas for wireless communications applications. Model and simulation of dialectric resonator (DR) and printed antennas for wireless applications; investigations of dual band and wideband responses including antenna radiation performance and antenna design optimization using parametric studies

Elmegri, Fauzi January 2015 (has links)
Dielectric resonator antenna (DRA) technologies are applicable to a wide variety of mobile wireless communication systems. The principal energy loss mechanism for this type of antenna is the dielectric loss, and then using modern ceramic materials, this may be very low. These antennas are typically of small size, with a high radiation efficiency, often above 95%; they deliver wide bandwidths, and possess a high power handling capability. The principal objectives of this thesis are to investigate and design DRA for low profile personal and nomadic communications applications for a wide variety of spectrum requirements: including DCS, PCS, UMTS, WLAN, UWB applications. X-band and part of Ku band applications are also considered. General and specific techniques for bandwidth expansion, diversity performance and balanced operation have been investigated through detailed simulation models, and physical prototyping. The first major design to be realized is a new broadband DRA operating from 1.15GHz to 6GHz, which has the potential to cover most of the existing mobile service bands. This antenna design employs a printed crescent shaped monopole, and a defected cylindrical DRA. The broad impedance bandwidth of this antenna is achieved by loading the crescent shaped radiator of the monopole with a ceramic material with a permittivity of 81. The antenna volume is 57.0  37.5  5.8 mm3, which in conjunction with the general performance parameters makes this antenna a potential candidate for mobile handset applications. The next class of antenna to be discussed is a novel offset slot-fed broadband DRA assembly. The optimised structure consists of two asymmetrically located cylindrical DRA, with a rectangular slot feed mechanism. Initially, designed for the frequency range from 9GHz to 12GHz, it was found that further spectral improvements were possible, leading to coverage from 8.5GHz to 17GHz. Finally, a new low cost dual-segmented S-slot coupled dielectric resonator antenna design is proposed for wideband applications in the X-band region, covering 7.66GHz to 11.2GHz bandwidth. The effective antenna volume is 30.0 x 25.0 x 0.8 mm3. The DR segments may be located on the same side, or on opposite sides, of the substrate. The end of these configurations results in an improved diversity performance. / General Secretariat of Education and Scientific Research Libya
5

Multiple Band-Notched UWB Antenna With Band-Rejected Elements Integrated in the Feed Line

Zhu, F., Gao, S., Ho, A.T.S., Abd-Alhameed, Raed, See, Chan H., Brown, T.W.C., Li, J., Wei, G., Xu, J. January 2013 (has links)
No / To mitigate potential interferences with coexisting wireless systems operating over 3.3-3.6 GHz, 5.15-5.35 GHz, or 5.725-5.825 GHz bands, four novel band-notched antennas suitable for ultra-wideband (UWB) applications are proposed. These include UWB antennas with a single wide notched band, a single narrow notched band, dual notched bands, and triple notched bands. Each antenna comprises a half-circle shaped patch with an open rectangular slot and a half-circle shaped ground plane. Good band-notched performance is achieved by using high permittivity and low dielectric loss substrate, and inserting quarter-wavelength horizontal/vertical stubs or alternatively embedding quarter-wavelength open-ended slots within the feed line. The results of both simulation and measurement confirm that the gain suppression of the single and multiple band-notched antennas in each desired notched band are over 15 dB and 10 dB, respectively. The radiation pattern of the proposed triple band-notched design is relatively stable across the operating frequency band.

Page generated in 0.078 seconds