• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 19
  • 8
  • 4
  • 1
  • Tagged with
  • 631
  • 631
  • 226
  • 149
  • 144
  • 120
  • 93
  • 76
  • 75
  • 71
  • 68
  • 59
  • 59
  • 54
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

The molecular interplay between the circadian clock and the plant immune signal, salicylic acid

Zhou, Mian January 2014 (has links)
<p>Plants have evolved the circadian clock to anticipate environmental changes and coordinate internal biological processes. Recent studies unveiled the circadian regulation on plant immune responses as well as a reciprocal effect of immune activation on the clock activity. However, it is still largely unknown how the circadian clock interacts with specific immune signals. Plant hormone salicylic acid (SA) is a key immune signal. Its accumulation is sufficient to trigger immune responses and establish broad-spectrum resistance, known as systemic acquired resistance (SAR). My dissertation work studied whether SA could interact with the circadian clock and what potential mechanisms and the biological significance are.</p><p>I first found that SA could reinforce the circadian clock through the modulation of redox state in an NONEXPRESSER OF PR 1 (NPR1)-dependent manner. The basal redox state manifested by the NADPH abundance is shown to display a circadian rhythm. Perturbation in this cellular redox rhythm caused by the immune signal SA is sensed by the master immune regulator NPR1. NPR1 then triggers defense genes expression to generate SAR as well as transcriptionally activates several clock genes to reinforce the circadian clock. Since the basal redox state, which reflects the cellular metabolic activities, is under the circadian control, the reinforced circadian clock may negate the SA-triggered redox perturbation to restore the normal redox rhythm. One of NPR1-regulated clock components is TIMMING OF CAB2 EXPRESSION 1 (TOC1). SA/NPR1-mediated increase in TOC1 expression alone could lead to dampening of SAR through direct transcriptional repression on defense genes. Since maintenance of the immune responses is an energy-costly process, the strength and duration of SAR, a preventative defense strategy, need to be fine-tuned to reduce unnecessary energy expenditure. Therefore, both SA-dependent circadian clock reinforcement and the specific clock component TOC1 induction help to ensure a proper immune induction and a balanced energy allocation between defense and normal metabolic activities.</p><p>Besides the SA effects on the circadian clock, the circadian clock is found to reciprocally regulate SA biosynthesis. The clock gene, CCA1 HIKING EXPEDITION (CHE), and the major SA synthesis gene, ISOCHORISMATE SYNTHASE 1 (ICS1), show in-phase oscillatory rhythms, indicating that CHE may contribute to generation of the circadian rhythm of the basal SA level. I found that CHE, as a transcription factor, directly binds to the promoter of ICS1 to positively regulate its expression. After pathogen infection, CHE promotes endogenous SA biosynthesis and acts as a positive regulator of SAR. The function of the clock component CHE in activating ICS1 not only reveals a novel transcriptional regulatory mechanism of SA accumulation but also provides a new molecular link between the circadian clock and plant immunity.</p><p>In summary, my dissertation studies identified previously unknown molecular mechanisms of how the circadian clock mediates SA biosynthesis and SA-triggered immune responses. The interplay between the circadian clock and SA achieves a balance between activation of immune responses and maintenance of normal metabolic activities. Further studies may explore how other plant immune signals affect the circadian clock as well as how different clock components coordinately regulate the plant immunity. These future directions will broaden our understanding about the clock-immunity crosstalk.</p> / Dissertation
172

ROLE OF LIPIDS IN TOMBUSVIRUS REPLICATION

Sharma, Monika 01 January 2011 (has links)
Positive-strand RNA virus group are the most abundant among viruses affecting plants and animals. To successfully achieve replication, these viruses usurp or co-opt host proteins. To facilitate the discovery of host factors involved in Tomato bushy stunt virus (TBSV), yeast has been developed as a surrogate model host. Genome-wide approaches covering 95% of yeast genes, has revealed approximately hundred factors that could affect virus replication. Among the identified host factors, there are fourteen yeast genes, which affect/regulate lipid metabolism of the host. One of the identified host gene is ERG25, which is an important factor for sterol biosynthesis pathway, affecting viral replication. Sterols present in eukaryotes affect the lipid composition of membranes, where tombusviruses, similar to other plus-strand viruses of tobacco, replicate. Since potent inhibitors of sterol synthesis are known, I have tested their effects on tombusvirus replication. We demonstrated that these sterolsynthesis inhibitors reduced virus replication in tobacco protoplasts. Virus replication is resumed to the wild type level by providing phytosterols in tobacco protoplasts confirming the role of sterols in RNA virus replication in tobacco. We have also identified INO2, a transcription factor for many phospholipid biosynthetic genes, reduces virus replication in its deletion background. When we provided this gene product in the mutant background, viral replication was back to normal, confirming the role of Ino2p in tombusvirus replication. Further biochemical assays showed that the viral inhibition is because of alteration in the formation of the viral replicase complex. Using confocal microscopy, we showed that the viral replication protein, termed p33, is forming large and few punctate structures rather than the small and many by overexpressing Ino2p in the wild type yeast cells. Over-expression of Opi1, an inhibitor of Ino2p led to greatly reduced viral replication, further supporting the roles of the phospholipid pathway in tombusvirus replication. One of the phospholipid, which is regulated by this pathway, is cardiolipin an important component of the mitochondrial as well as peroxisomal membranes. We further characterized how cardiolipin is playing an important role for tombusvirus replication by using different biochemical approaches.
173

MOLECULAR AND CHEMICAL DISSECTION OF CELLULOSE BIOSYNTHESIS IN PLANTS

Harris, Darby M. 01 January 2011 (has links)
Plant cell walls are complex structures that must not only constrain cellular turgor pressure but also allow for structural modification during the dynamic processes of cell division and anisotropic expansion. Cell walls are composed of highly glycosylated proteins and polysaccharides, including pectin, hemicellulose and cellulose. The primary cell wall polysaccharide is cellulose, a polymer composed of high molecular weight !- 1,4-glucan chains. Although cellulose is the most abundant biopolymer on Earth, there is still a lot to learn about its biosynthesis and regulation. This research began by applying a variety of analytical techniques in an attempt to understand differences in cell wall composition and cellulose structure within the plant body, between different plant species and as a result of acclimation by the plant to different environmental conditions. Next, a number of different Arabidopsis thaliana lines possessing mutations affecting cell wall biosynthesis were analyzed for changes in cellulose structure (crystallinity) and biomass saccharification efficiency. One of these mutants, isoxaben resistance1-2 (ixr1- 2), which contains a point mutation in the C-terminal transmembrane region (TMR) of cellulose synthase 3 (CESA3), exhibited a 34% lower biomass crystallinity index and a 151% improvement in saccharification efficiency relative to that of wild-type. The culmination of this research began with a chemical screen that identified the molecule quinoxyphen as a primary cell wall cellulose biosynthesis inhibitor. By forward genetics, a semi-dominant mutant showing strong resistance to quinoxyphen named aegeus was identified in A. thaliana and the resistance locus mapped to a point mutation in the TMR of CESA1. cesa1aegeus occurs in a similar location to that of cesa3ixr1-2, illustrating both subunit specificity and commonality of resistance locus. These drug resistant CESA TMR mutants are dwarfed and have aberrant cellulose deposition. High-resolution synchrotron X-ray diffraction and 13C solid-state nuclear magnetic resonance spectroscopy analysis of cellulose produced from cesa1aegeus, cesa3ixr1-2 and the double mutant shows a reduction in cellulose microfibril width and an increase in mobility of the interior glucan chains of the cellulose microfibril relative to wild-type. These data demonstrate the importance of the TMR region of CESA1 and CESA3 for the arrangement of glucan chains into a crystalline cellulose microfibril in primary cell walls.
174

ROLE OF THE SEXUAL CYCLE IN DEVELOPMENT OF GENOTYPIC AND PHENOTYPIC DIVERSITY IN Gibberella zeae

Bec, Sladana 01 January 2011 (has links)
Gibberella zeae (anamorph Fusarium graminearum) is a homothallic ascomycete pathogen that is responsible for causing Fusarium head blight (FHB) of wheat and small grains. In addition to causing a reduction in yield, harvested grain is frequently contaminated with trichothecene mycotoxins that are harmful for human and animal health. Use of wheat varieties with resistance to FHB is an important strategy to lower its impact. In order to produce varieties with durable resistance, we must understand the origin and degree of genetic diversity present in the pathogen population. In my research, I focused my efforts on an investigation of the role of mating and sexual development in the generation of genotypic and phenotypic variability in G. zeae. The goal of one part of my work was to develop new genetic markers that can be used to monitor out-crossing and genetic diversity in the population. I also optimized gene deletion protocols for G. zeae so that I could produce mutant and control strains to address my research hypothesis that MAT genes play a direct role in pathogenicity. Application of novel repetitive RFLP probes to a group of G. zeae isolates originating from and near Kentucky revealed a surprisingly high degree of diversity in these local populations. Diversity between locations was greater than that within locations, suggesting the relative importance of local inoculum sources. The probes were also useful as genetic markers for segregation analysis. I crossed two genetically closely related, and commonly used, laboratory strains of G. zeae and found that this resulted in transgressive segregation for both aggressiveness and toxigenicity. I showed that the very high and very low levels of aggressiveness and toxigenicity in transgressive segregants are heritable. I also showed that selfing produced a higher degree of diversity in these traits among the progeny than was observed among conidial progeny. This suggests the presence of epigenetic factors that impact pathogenicity. Sexual behavior in G. zeae is under the control of MATing type genes. I deleted the complete MAT1 locus, and the MAT1-1-1, and MAT1-2-1 genes separately. Deletion of each of the targeted sequences produced the expected shifts in fertility phenotype. The mat1KO strains became asexual, while mat1-1-1KO and mat1-2-1KO strains shifted to obligate heterothallism. Deletion of the MAT1-1-1 and MAT1-2-1 genes had a negative effect on aggressiveness and mycotoxin production in planta, but deletion of the complete MAT1 locus had no effect. The set of mutant and ectopic control strains that I generated will be a useful asset that will be made available to the research community.
175

ELUCIDATING THE BIOCHEMICAL WIZARDRY OF TRITERPENE METABOLISM IN <i>BOTROYCOCCUS BRAUNII</i>

Niehaus, Thomas Daniel 01 January 2011 (has links)
B. braunii is a green alga that has attracted attention as a potential renewable fuel source due to its high oil content and the archeological record of its unique contribution to oil and coal shales. Three extant chemotypes of B. braunii have been described, namely race A, race B, and race L, which accumulate alkadienes and alkatrienes, botryococcene and squalene and their methylated derivatives, and lycopadiene, respectively. The methylated triterpenes, particularly botryococcenes, produced by race B can be efficiently converted to high quality combustible fuels and other petrochemicals; however, botryococcene biosynthesis has remained enigmatic. It has been suggested that botryococcene biosynthesis could resemble that of squalene, arising from an initial condensation of two molecules of farnesyl diphosphate (FPP) to form pre-squalene diphosphate (PSPP), which then undergoes a reductive rearrangement to form squalene, or in an alternative reductive rearrangement, botryococcene. Based on the proposed similarities, we predicted that a botryococcene synthase would resemble squalene synthase and hence, isolated squalene synthase-like genes from B. braunii race B. While B. braunii does harbor at least one typical squalene synthase, none of the other three squalene synthase-like (SSL) genes encode for botryococcene biosynthesis directly. SSL-1 catalyzes the biosynthesis of PSPP and SSL-2 the biosynthesis of bisfarnesyl ether and to a lesser extent squalene, while SSL-3 does not appear able to directly utilize FPP as a substrate. However, when SSL-1 is combined with either SSL-2 or SSL-3, in vivo and in vitro, robust squalene or botryococcene biosynthesis was observed, respectively. These findings were unexpected because squalene synthase, an ancient and likely progenitor to the other Botryococcus triterpene synthases, catalyzes a two-step reaction within a single enzyme unit without intermediate release, yet in B. braunii, these activities appear to have separated and evolved inter-dependently for specialized triterpene production. Expression of various configurations of the SSL genes in TN-7 yeast demonstrates that botryococcene can be efficiently produced in a heterologous host. Additionally, three triterpene methyltransferase (TMTs) were isolated which efficiently catalyze the transfer of a methyl group from S-adenosyl methionine (SAM) to either squalene (TMT-1 and TMT-2) or botryococcene (TMT-3) in vivo and in vitro. Co-expression of the various TMT genes with either squalene synthase or botryococcene synthase in TN-7 yeast resulted in the accumulation of C31 and C32 methyl derivatives of squalene or botryococcene, demonstrating their potential for heterologous production. The methylation sites were determined by NMR spectroscopy to be identical to C31 and C32 methyl-derivatives of squalene or botryococcene observed in B. braunii race B. Expression studies of various heterologous squalene synthase genes in S. cerevisiae corroborated an earlier but surprising observation reported in the literature. While the squalene synthase gene of S. cerevisiae was able to complement an erg9 (squalene synthase) knockout in yeast, squalene synthase genes from plants and animals were not. Chemical profiles revealed that squalene accumulated to significant levels in yeast expressing the squalene synthase of plant, animal, or S. cerevisiae. This suggested that it was not the ability of these heterologous synthase enzymes to produce squalene, but their inability to feed squalene into the native sterol biosynthetic pathway that prevented them from restoring normal ergosterol biosynthesis in S. cerevisiae. By examining the ability of chimera squalene synthase enzymes to complement the erg9 mutation, a discrete sequence of amino acids near the C-terminus of the enzyme was identified which is necessary and sufficient for allowing any squalene synthase to restore normal sterol metabolism.
176

Cause and Control of a Common Market Disease of Lettuce

Palmore, William 01 March 1971 (has links)
Head lettuce, Lactuta sativa var. capitata, is susceptible to a number of economically important diseases, the most frequent being russet spot, rib discoloration, and vascular browning (28), which have been shown by Ceponis and Friedman (7) to be caused by Pseudomonas marginalis. Pseudomonads are common plant pathogens and cause such diseases as halo blight in beans (20), bacterial blight in soybeans (20), and bacterial wilt of the bird-of-paradise (27) and tobacco (24). Plants that develop symptoms similar to russet of lettuce are oats, infected by Pseudomonas cichorii, and tobacco infected with Pseudomonas tobaci (34). In general, russet symptoms include few to numerous yellow, pink, brown, olive brown or dark brown irregular specks ranging in diameter from 1/16 to 1/8 inch (28). In tobacco these lesions are thought to result from a necrotizing toxin, diamino-dicarboxylic acid, beta-hydroxy-alpha, epsilon-aminopimelic acid, produced by the bacteria (34). In lettuce these lesions result from the bacterial enzymes, protopectinase and pectin depolymerase (7). The red discoloration of lettuce often encountered in grocery stores and home refrigerators has been given the name russet spot, rib discoloration, and tipburn, depending upon where the discoloration occurs (26). These terms are sometimes used interchangeably in the literature. This investigation was initiated for two purposes: to determine factors which could be responsible for the symptoms which diseased market lettuce develops; and to investigate a preservation procedure that would best control the incidence of this disease.
177

Investigations into host-specific interactions and local adaptation in the mycorrhizal symbiosis

Gonzalez, Jonathan 01 January 2014 (has links)
Mycorrhizal fungi are soil-borne organisms that form symbiotic associations with the majority of land plants. These fungi gather and exchange mineral nutrients with plants for photosynthetically derived carbohydrates. Mycorrhizal fungi can also confer other benefits onto plants, e.g. defense against pathogens, improved water relations, tolerance to heavy metal toxicity and herbivory. The influence of mycorrhizal fungi on plant mineral nutrition and response to stress suggests that these organisms may have a role to play sustainable agriculture as well as in bioremediation and ecosystem restoration. In contributing to this important research, I investigated host-specific interactions between mycorrhizal fungi and the sex morphs of the gynodioecious perennial herb Polemonium foliosissimum (Polemoniaceae) and their mycorrhizal associates in the field. I hypothesized that the genders of this species differed in their associations with mycorrhizal fungi in benefits received. I performed a full factorial simulated herbivory experiment and evaluated the extent of mycorrhizal colonization in the roots as well as the concentrations of nutrients in leaf tissue. Mycorrhizal colonization and leaf nutrient concentrations did not differ between the genders nor were influenced by the experimental treatments. This suggests that the genders of Polemonium foliosissimum do not interact differently with mycorrhizal fungi, and thus do not represent different "hosts". Also, I investigated local adaptation of mycorrhizal associations by exploring the effect of large herbivore grazing on plant-mycorrhizal associations. I hypothesized that grazing by large herbivores results in locally adapted symbioses that enhance plant response to herbivory. I grew the perennial bunchgrass Themeda triandra (Poaceae) in inoculum prepared from soils collected from three field exclosures with differing histories of large herbivore exclusion in the Kenya Long Term Exclosure Experiment. I conducted a full factorial simulated herbivory experiment in which plants were subject to two clipping events over the course of 5-months, and evaluated plant regrowth as well as mycorrhizal colonization for plants in the experiment. Plants grown in inoculum from exclosures in which large herbivores have had access produced more root mass when mycorrhizal fungi were present. Further, I found equivalent biomass production of clipped and non-clipped plants in inoculum prepared from the exclosure with only native large herbivore access while equivalent biomass production was not found in the substrate prepared from areas with a history of large herbivore exclusion. This suggests that mycorrhizal fungi mediate plant growth and response to herbivory in this system.
178

Etude de la voie de signalisation SnAK/SnRK1 ("SnRK1‐Activating Kinase/SNF1‐Related Kinase 1") chez Arabidopsis thaliana / Study of the SnAK/SnRK1 ("SnRK1‐Activating Kinase/SNF1‐Related Kinase 1") signaling pathway in Arabidopsis thaliana

Guérinier, Thomas 18 December 2012 (has links)
La famille de protéines kinases SNF1/AMPK/SnRK1 (levure/mammifères/plantes) est un régulateur central du métabolisme cellulaire chez l’ensemble des eucaryotes, activant le catabolisme et inhibant l’anabolisme en réponse au stress. Ces hétérotrimères sont composés d’une sous-unité catalytique (kinase α) et de deux sous-unités régulatrices (β et γ). De très nombreux travaux sur l’AMPK (AMP-activated Kinase) chez les mammifères ont révélé l’incroyable complexité de cette voie de signalisation impliquant des régulateurs en amont et une pléthore de cibles.Chez les plantes, les cibles connues de SnRK1 (« SNF1-Related Kinase 1 ») comprennent des facteurs de transcription, imposant une reprogrammation transcriptomique importante, et des enzymes clés du métabolisme telles que la Sucrose Phosphate Synthase et la Nitrate Reductase, conduisant, comme chez l’animal, au contrôle de l’homéostasie énergétique. Toutefois, les mécanismes de régulation de ces complexes sont eux très peu connus.Dans une première partie, nous avons recherché des métabolites capables d’influencer l’activité de SnRK1. L’enrichissement rapide d’extraits végétaux en complexes SnRK1 d’Arabidopsis thaliana, couplé à des mesures spécifiques d’activité kinase in vitro, nous ont permis de montrer que l’ADP, l’AMP et le citrate étaient des inhibiteurs forts de ces enzymes. Ces résultats nous ont permis d’établir un modèle physiologique dans lequel les complexes SnRK1 répondent à la fois au statut carboné de la cellule mais également aux niveaux globaux des adénylates.Dans une seconde partie, nous nous sommes intéressés aux kinases amont AtSnAK1 et AtSnAK2 (activatrices des sous-unités catalytiques AtSnRK1α1). Des essais kinases sur protéines recombinantes ont permis de mettre en évidence de nouveau un effet inhibiteur des adénylates sur l’activité de ces protéines, suggérant que l’ensemble de la voie SnAK/SnRK1 répond à des signaux énergétiques. De plus, la caractérisation de mutants perte-de-fonction a révélé un rôle important des kinases AtSnAK1 et 2 dans la transition hétérotrophie/autotrophie des jeunes plantules.Enfin, nous avons caractérisé un lien inédit chez les plantes entre homéostasie énergétique et prolifération cellulaire en montrant que les kinases AtSnRK1 sont capables de phosphoryler et inhiber les orthologues KRP6 et KRP7 de l’inhibiteur du cycle cellulaire de mammifères p27KIP1.Un modèle global des fonctions de cette kinase à l’échelle de la plante entière et de son développement est proposé en intégrant ces résultats aux connaissances actuelles sur les complexes SnRK1. / The conserved family of protein kinases SNF1/AMPK/SnRK1 (yeast/mammals/plants) is considered as a central element of cell metabolism regulation by controlling both anabolism and catabolism in response to stress conditions. These proteins are complexes composed of three actors, one conferring the catalytic activity (kinase α) and two regulatory subunits (β and γ). A massive interest for the mammalian AMPK (AMP-activated Kinase) during the past two decades has underlined the extreme complexity of this signalling pathway which involves several upstream regulators and multiple targets. In plants, known SnRK1 (SNF1-Related Kinase 1) targets mainly include transcription factors inducing a massive transcriptomic reprogramming, and key metabolic enzymes such as Sucrose Phosphate Synthase and Nitrate Reductase leading, like in mammals, to the control of cellular homeostasis. However, little is known concerning their regulation. In a first axis, we focused on the search for cell components capable of influencing Arabidopsis thaliana SnRK1 activity. Using an in vitro specific peptide-based assay, we have characterized upstream inhibitors including adenylates and citrate. These data allow us to add novel elements to a physiological model where AtSnRK1 coordinates metabolism in response to adenylates and citrate concentrations.The second axis is dedicated to the upstream activating kinases SnAK1 and SnAK2. A biochemical approach with recombinant proteins and in vitro specific peptide-based assays were used to test the effects of metabolites on SnAK1 and SnAK2 activities. By using loss-of-function mutants, we further pointed out a key role for these proteins during the heterotrophic-to-autotrophic transition of the young plantlets.In addition, we have identified a novel target of SnRK1 complexes. The characterisation of the AtSnRK1-dependent phosphorylation of AtKRP6 and AtKRP7, homologous to the p27KIP1 mammalian cell cycle inhibitor, highlighted a novel link between energy homeostasis and cell proliferation in plants.The current knowledge on SnRK1 complexes and the results described above allowed us to provide a global model regarding SnRK1 functions at the whole-plant level.
179

Grazing and drought in tallgrass prairie: the role of belowground bud banks in vegetation dynamics

VanderWeide, Benjamin Lee January 1900 (has links)
Doctor of Philosophy / Department of Biology / David C. Hartnett / Grazing and drought are instrumental in the development and maintenance of perennial grasslands. In this research I tested the belowground bud bank contribution to tallgrass prairie resistance and resilience when perturbed by grazing and drought. First, I tested the bud bank role in vegetation response to and recovery from severe drought (Chapter 2). I compared above- and belowground responses of experimentally droughted plots to ambient controls and irrigated plots during two years of severe drought and two years of recovery. I found that although aboveground net primary productivity declined 30-60% during drought, bud bank density and demography were insensitive to drought. These results suggest that grassland resistance and resilience when perturbed by drought may be mediated by stability of belowground bud banks. Second, I investigated vegetation and soil nutrient legacies following release from long-term grazing (Chapter 3). I documented a relatively rapid shift in aboveground vegetation within four years of grazer exclusion, with productivity, stem density, and diversity becoming relatively more similar to ungrazed than grazed prairie. The density and composition of the belowground bud bank and soil seed bank shifted more slowly, remaining more similar to grazed than ungrazed prairie. Responses of soil nutrients to removal of grazers varied, and in some cases was affected by recent fire history. These results demonstrate the contribution of belowground propagules to the maintenance of a diverse plant community both during grazing and after grazers are removed. Finally, I examined short-term vegetation responses to both drought and grazing (Chapter 4). Despite extreme drought and simulated grazing that reduced productivity and increased mortality of individual stems, the dominant C4 grasses maintained a stable bud bank. Aboveground net primary productivity and bud bank density of sedges and forbs, however, were reduced by both drought and grazing. This differential response of species to extreme drought and grazing led to shifts in community composition and species diversity over one growing season. Across drought and grazing treatments, live rhizome biomass was highly correlated with bud bank density and may be a useful, more easily measured index of bud bank density.
180

INCREASING RENEWABLE OIL CONTENT AND UTILITY

Serson, William Richard 01 January 2017 (has links)
Since the dawn of agriculture man has been genetically modifying crop plants to increase yield, quality and utility. In addition to selective breeding and hybridization we can utilize mutant populations and biotechnology to have greater control over crop plant modification than ever before. Increasing the production of plant oils such as soybean oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. We show that by manipulating a highly active acyl-CoA: diacylglycerol acyltransferase (DGAT) the hydrocarbon flux to oil in oilseeds can be increased without reducing the protein component. Compared to other plant DGATs, a DGAT from Vernonia galamensis (VgDGAT1A) produces much higher oil synthesis and accumulation activity in yeast, insect cells and soybean. Soybean lines expressing VgDGAT1A show a 4% increase in oil content without reductions in seed protein contents or yield per unit land area. Furthermore, we have screened a soybean fast neutrino population derived from M92-220 variety and found three high oil mutants that do not have reduced levels of protein. From the F2 plant populations we quantitatively pooled the high oil and low oil plants and performed comparative genomics hybridization (CGH). From the data it appears that two families have a 0.3 kb aberration in chromosome 14. We are performing further analysis to study this aberration and develop markers for molecular breeding. Mutagenic techniques are also useful for developing other traits such as early flowering varieties and adapting new high oil crops to a new region. Chia (Salvia hispanica) is an ancient crop that has experienced an agricultural resurgence in recent decades due to the high omega 3 fatty acid (ω-3) content of the seeds and good production potential. The area of cultivation has been expanded to Kentucky using mutagenized populations and the composition traits are similar to that of the original regions of cultivation in Central and South America.

Page generated in 0.0648 seconds