• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational tools for the analysis of biological networks in plants

Das, Abhiram 07 January 2016 (has links)
This thesis presents research associated to phenotyping of plants by applying informatics techniques which includes databases, web technologies, image processing and feature measurements of 2D and 3D images. The thesis presents two enabling bioinformatics tools related by a shared set of research objectives and distinct by the nature of their applications. The first project called ClearedLeavesDB, is a common platform for plant biologists to share data and metadata about cleared leaf images. This project resulted in an online interactive database of cleared leaf images. The second project called Digital Imaging of Root Traits (DIRT), is an application to store, manage, share and process root images as well as analyze root image traits with respect to different experiments. This application is deployed on iPlant's cyber-infrastructure and currently supports management of 2D root images and high-throughput processing and structural descriptor/trait estimation from root images. The application enables storage, management and sharing heterogeneous image data and metadata including dynamic environmental and descriptor data. In the final part of the thesis, I describe ongoing challenges in developing new methods to measure global and local descriptors from reconstructed 3D root images.
2

Image Analysis For Plant Phenotyping

Enyu Cai (15533216) 17 May 2023 (has links)
<p>Plant phenotyping focuses on the measurement of plant characteristics throughout the growing season, typically with the goal of evaluating genotypes for plant breeding and management practices related to nutrient applications. Estimating plant characteristics is important for finding the relationship between the plant's genetic data and observable traits, which is also related to the environment and management practices. Recent machine learning approaches provide promising capabilities for high-throughput plant phenotyping using images. In this thesis, we focus on estimating plant traits for a field-based crop using images captured by Unmanned Aerial Vehicles (UAVs). We propose a method for estimating plant centers by transferring an existing model to a new scenario using limited ground truth data. We describe the use of transfer learning using a model fine-tuned for a single field or a single type of plant on a varied set of similar crops and fields. We introduce a method for rapidly counting panicles using images acquired by UAVs. We evaluate three different deep neural network structures for panicle counting and location. We propose a method for sorghum flowering time estimation using multi-temporal panicle counting. We present an approach that uses synthetic training images from generative adversarial networks for data augmentation to enhance the performance of sorghum panicle detection and counting. We reduce the amount of training data for sorghum panicle detection via semi-supervised learning. We create synthetic sorghum and maize images using diffusion models. We propose a method for tomato plant segmentation by color correction and color space conversion. We also introduce the methods for detecting and classifying bacterial tomato wilting from images.</p>
3

ESTIMATING PLANT PHENOTYPIC TRAITS FROM RGB IMAGERY

Yuhao Chen (7870844) 20 November 2019 (has links)
<div>Plant Phenotyping is a set of methodologies for measuring and analyzing characteristic traits of a plant. While traditional plant phenotyping techniques are labor-intensive and destructive, modern imaging technologies have provided faster, non-invasive, and more cost-effective capabilities for plant phenotyping. Among different image-based phenotyping platforms, I focus on phenotyping with image data captured by Unmanned Aerial Vehicle (UAV) and ground vehicles. The crop plant used in my study is sorghum [Sorghum bicolor (L.) Moench]. In this thesis, I present multiple methods to estimate plot-level and plant-level plant traits from data collected by various platforms, including UAV and ground vehicles. I propose an image plant phenotyping system that provides end-to-end RGB data analysis for plant scientists. I describe a plant segmentation method using HSV color information. I introduce two methods to locate the center of the plants using Multiple Instance Learning (MIL) and Convolutional Neural Networks (CNN). I present three methods to segment individual leaves by shape-based approaches in both Cartesian coordinates and Polar coordinates. I propose a method to estimate leaf length and width for overhead leaf images. I describe a method to estimate leaf angle from data collected by a modified wheel-based sprayer with a sensor boom vehicle, Phenorover. Methods are tested and verified on image data collected by UAV and ground vehicle platforms in sorghum fields in West Lafayette, Indiana, USA. Estimated phenotypic traits include plant locations, the number of plants per plot, leaf area, canopy cover, Leaf Area Index (LAI), leaf count, leaf angle, leaf length, and leaf width.</div>
4

Plant high-throughput phenotyping using photogrammetry and 3D modeling techniques

An, Nan January 1900 (has links)
Doctor of Philosophy / Agronomy / Kevin Price / Stephen M. Welch / Plant phenotyping has been studied for decades for understanding the relationship between plant genotype, phenotype, and the surrounding environment. Improved accuracy and efficiency in plant phenotyping is a critical factor in expediting plant breeding and the selection process. In the past, plant phenotypic traits were extracted using invasive and destructive sampling methods and manual measurements, which were time-consuming, labor-intensive, and cost-inefficient. More importantly, the accuracy and consistency of manual methods can be highly variable. In recent years, however, photogrammetry and 3D modeling techniques have been introduced to extract plant phenotypic traits, but no cost-efficient methods using these two techniques have yet been developed for large-scale plant phenotyping studies. High-throughput 3D modeling techniques in plant biology and agriculture are still in the developmental stages, but it is believed that the temporal and spatial resolutions of these systems are well matched to many plant phenotyping needs. Such technology can be used to help rapid phenotypic trait extraction aid crop genotype selection, leading to improvements in crop yield. In this study, we introduce an automated high-throughput phenotyping pipeline using affordable imaging systems, image processing, and 3D reconstruction algorithms to build 2D mosaicked orthophotos and 3D plant models. Chamber-based and ground-level field implementations can be used to measure phenotypic traits such as leaf length, rosette area in 2D and 3D, plant nastic movement, and diurnal cycles. Our automated pipeline has cross-platform capabilities and a degree of instrument independence, making it suitable for various situations.
5

Ameliorating Environmental Effects on Hyperspectral Images for Improved Phenotyping in Greenhouse and Field Conditions

Dongdong Ma (9224231) 14 August 2020 (has links)
Hyperspectral imaging has become one of the most popular technologies in plant phenotyping because it can efficiently and accurately predict numerous plant physiological features such as plant biomass, leaf moisture content, and chlorophyll content. Various hyperspectral imaging systems have been deployed in both greenhouse and field phenotyping activities. However, the hyperspectral imaging quality is severely affected by the continuously changing environmental conditions such as cloud cover, temperature and wind speed that induce noise in plant spectral data. Eliminating these environmental effects to improve imaging quality is critically important. In this thesis, two approaches were taken to address the imaging noise issue in greenhouse and field separately. First, a computational simulation model was built to simulate the greenhouse microclimate changes (such as the temperature and radiation distributions) through a 24-hour cycle in a research greenhouse. The simulated results were used to optimize the movement of an automated conveyor in the greenhouse: the plants were shuffled with the conveyor system with optimized frequency and distance to provide uniform growing conditions such as temperature and lighting intensity for each individual plant. The results showed the variance of the plants’ phenotyping feature measurements decreased significantly (i.e., by up to 83% in plant canopy size) in this conveyor greenhouse. Secondly, the environmental effects (i.e., sun radiation) on <a>aerial </a>hyperspectral images in field plant phenotyping were investigated and modeled. <a>An artificial neural network (ANN) method was proposed to model the relationship between the image variation and environmental changes. Before the 2019 field test, a gantry system was designed and constructed to repeatedly collect time-series hyperspectral images with 2.5 minutes intervals of the corn plants under varying environmental conditions, which included sun radiation, solar zenith angle, diurnal time, humidity, temperature and wind speed. Over 8,000 hyperspectral images of </a>corn (<i>Zea mays </i>L.) were collected with synchronized environmental data throughout the 2019 growing season. The models trained with the proposed ANN method were able to accurately predict the variations in imaging results (i.e., 82.3% for NDVI) caused by the changing environments. Thus, the ANN method can be used by remote sensing professionals to adjust or correct raw imaging data for changing environments to improve plant characterization.
6

Machine Learning for Spacecraft Time-Series Anomaly Detection and Plant Phenotyping

Sriram Baireddy (17428602) 01 December 2023 (has links)
<p dir="ltr">Detecting anomalies in spacecraft time-series data is a high priority, especially considering the harshness of the spacecraft operating environment. These anomalies often function as precursors for system failure. Traditionally, the time-series data channels are monitored manually by domain experts, which is time-consuming. Additionally, there are thousands of channels to monitor. Machine learning methods have proven to be useful for automatic anomaly detection, but a unique model must be trained from scratch for each time-series. This thesis proposes three approaches for reducing training costs. First, a transfer learning approach that finetunes a general pre-trained model to reduce training time and the number of unique models required for a given spacecraft. The second and third approaches both use online learning to reduce the amount of training data and time needed to identify anomalies. The second approach leverages an ensemble of extreme learning machines while the third approach uses deep learning models. All three approaches are shown to achieve reasonable anomaly detection performance with reduced training costs.</p><p dir="ltr">Measuring the phenotypes, or observable traits, of a plant enables plant scientists to understand the interaction between the growing environment and the genetic characteristics of a plant. Plant phenotyping is typically done manually, and often involves destructive sampling, making the entire process labor-intensive and difficult to replicate. In this thesis, we use image processing for characterizing two different disease progressions. Tar spot disease can be identified visually as it induces small black circular spots on the leaf surface. We propose using a Mask R-CNN to detect tar spots from RGB images of leaves, thus enabling rapid non-destructive phenotyping of afflicted plants. The second disease, bacteria-induced wilting, is measured using a visual assessment that is often subjective. We design several metrics that can be extracted from RGB images that can be used to generate consistent wilting measurements with a random forest. Both approaches ensure faster, replicable results, enabling accurate, high-throughput analysis to draw conclusions about effective disease treatments and plant breeds.</p>
7

PREDICTIVE MODELS TRANSFER FOR IMPROVED HYPERSPECTRAL PHENOTYPING IN GREENHOUSE AND FIELD CONDITIONS

Tanzeel U Rehman (13132704) 21 July 2022 (has links)
<p>  </p> <p>Hyperspectral Imaging is one of the most popular technologies in plant phenotyping due to its ability to predict the plant physiological features such as yield biomass, leaf moisture, and nitrogen content accurately, non-destructively, and efficiently. Various kinds of hyperspectral imaging systems have been developed in the past years for both greenhouse and field phenotyping activities. Developing the plant physiological prediction model such as relative water content (RWC) using hyperspectral imaging data requires the adoption of machine learning-based calibration techniques. Convolutional neural networks (CNNs) have been known to automatically extract the features from the raw data which can lead to highly accurate physiological prediction models. Once a reliable prediction model has been developed, sharing that model across multiple hyperspectral imaging systems is very desirable since collecting the large number of ground truth labels for predictive model development is expensive and tedious. However, there are always significant differences in imaging sensors, imaging, and environmental conditions between different hyperspectral imaging facilities, which makes it difficult to share plant features prediction models. Calibration transfer between the imaging systems is critically important. In this thesis, two approaches were taken to address the calibration transfer from the greenhouse to the field. First, direct standardization (DS), piecewise direct standardization (PDS), double window piecewise direct standardization (DPDS) and spectral space transfer (SST) were used for standardizing the spectral reflectance to minimize the artifacts and spectral differences between different greenhouse imaging systems. A linear transformation matrix estimated using SST based on a small set of plant samples imaged in two facilities reduced the root mean square error (RMSE) for maize physiological feature prediction significantly, i.e., from 10.64% to 2.42% for RWC and from 1.84% to 0.11% for nitrogen content. Second, common latent space features between two greenhouses or a greenhouse and field imaging system were extracted in an unsupervised fashion. Two different models based on deep adversarial domain adaptation are trained, evaluated, and tested. In contrast to linear standardization approaches developed using the same plant samples imaged in two greenhouse facilities, the domain adaptation extracted non-linear features common between spectra of different imaging systems. Results showed that transferred RWC models reduced the RMSE by up to 45.9% for the greenhouse calibration transfer and 12.4% for a greenhouse to field transfer. The plot scale evaluation of the transferred RWC model showed no significant difference between the measurements and predictions. The methods developed and reported in this study can be used to recover the performance plummeted due to the spectral differences caused by the new phenotyping system and to share the knowledge among plant phenotyping researchers and scientists.</p>
8

Digital Soil Mapping of the Purdue Agronomy Center for Research and Education

Shams R Rahmani (8300103) 07 May 2020 (has links)
This research work concentrate on developing digital soil maps to support field based plant phenotyping research. We have developed soil organic matter content (OM), cation exchange capacity (CEC), natural soil drainage class, and tile drainage line maps using topographic indices and aerial imagery. Various prediction models (universal kriging, cubist, random forest, C5.0, artificial neural network, and multinomial logistic regression) were used to estimate the soil properties of interest.

Page generated in 0.0752 seconds