Spelling suggestions: "subject:"plant microbiome"" "subject:"slant microbiome""
1 |
Redes ecológicas em comunidades bacterianas da filosfera, dermosfera e rizosfera de espécies arbóreas da Mata Atlântica / Ecological networks in bacterial communities of phyllosphere, dermosphere and rhizosphere of tree species of the Atlantic ForestBerdugo, Silvia Eugenia Barrera 02 September 2016 (has links)
A Mata Atlântica é uma floresta tropical úmida considerada um \"hotspot\" de biodiversidade e endemismo. É uma das florestas mais antigas do mundo e uma das maiores florestas da América, abrangendo aproximadamente 150 milhões de hectares em condições ambientais altamente heterogêneas. Estudos em diferentes ambientes da Mata Atlântica, nos núcleos de Picinguaba e Santa Virginia no Parque Estadual da Serra do Mar (PESM), têm sido realizados para determinar a diversidade de espécies e alterações da estrutura das comunidades de bactérias, tanto na filosfera, quanto na dermosfera e solo rizosférico. No entanto, pouco se sabe sobre as funções ecológicas dessas bactérias, e sobre as interações ecológicas entre as comunidades microbianas e os ambientes onde se desenvolvem. Assim o objetivo desse trabalho foi explorar as interações entre as comunidades microbianas da filosfera, dermosfera e solo coletado sobre a projeção da copa de duas espécies arbóreas da Mata Atlântica ao longo de um gradiente altitudinal, usando análises de co-ocorrência, a partir dos dados obtidos por pirosequenciamento da região V4 do gene rRNA 16S de bactérias, para determinar padrões de associações de bactérias em diferentes níveis taxonômicos em cada microambiente. Para esse estudo, foi proposta a hipótese de que mesmo que as condições ambientais sejam diferentes em cada tipo de floresta (gradiente altitudinal), pode existir grupos de bactérias específicos que co-ocorrem na filosfera, dermosfera ou solo das plantas, funcionando como taxons chaves na estruturação das comunidades bacterianas. Com base do sequenciamento dos genes rRNA 16S, as comunidades bacterianas associadas à filosfera e dermosfera de E. edulis e G. opposita nas diferentes florestas foram mais similares entre si do que as do solo. Actinobacteria, Firmicutes, Bacteroidetes e Proteobacteria foram mais abundantes em todos os microambientes estudados. Diferenças nas estruturas das comunidades bacterianas na filosfera, dermosfera e solo foram observadas ao longo do gradiente altitudinal, independente da espécie de planta. Na floresta de terras baixas, a comunidade bacteriana associada à filosfera foi mais similar entre E. edulis e G. opposita. No solo, a comunidade bacteriana foi mais similar dentro de cada tipo de floresta do que entre florestas, sugerindo um efeito da fisionomia da floresta nas comunidades de bactérias dos solos. Explorando as redes de co-ocorrência das comunidades bacterianas em cada microambiente observou-se que no nível de UTOs, cada microambiente têm diferentes táxons chaves que podem regular as interações ecológicas da comunidade. Embora táxons chaves não representam as UTOs mais abundantes em cada microambiente, eles pertencem, predominantemente às classes Alphaproteobacteria e Gammaproteobacteria, sugerindo que na filosfera, dermosfera e solo o core microbioma não pode ser definido ao nível de UTO, mas possivelmente a níveis taxonômicos mais elevados representando grandes grupos microbianos que apresentam funções redundantes. / The Atlantic Forest is a rainforest considered a hotspot of biodiversity and endemism. It is one of the oldest forests in the world and one of the largest forests of America, covering approximately 150 million hectares in highly heterogeneous environmental conditions. Studies in different environments of the Atlantic forest, in the Picinguaba and Santa Virginia areas in the Serra do Mar State Park (PESM) have been conducted to determine the species diversity and changes in the structure of the bacterial communities in the phyllosphere, dermosphere and rhizosphere. However, little is known on the ecological functions of these bacteria, and on the ecological interactions between microbial communities and the environment in which they develop. The aim of this study was to explore the interactions between the microbial communities of the phyllosphere, dermosphere and rhizosphere of two tree species of the Atlantic Forest along an altitudinal gradient. Co-occurrence analysis based on data obtained by pyrosequencing of the 16S rRNA gene V4 region of bacteria to determine patterns of bacterial associations in different taxonomic levels in each microenvironment. For this study, the hypothesis that even if the environmental conditions are different in each type of forest (altitudinal gradient), there may be specific groups of bacteria that co-occur in the phyllosphere, dermosphere or rhizosphere, functioning as keystone taxa in the bacterial communities. Based on the sequencing of 16S rRNA genes, bacterial communities associated with the E. edulis and G. opposita phyllosphere and dermosphere in different forests were more similar to each other than the rhizosphere. Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes were the more abundant taxa in all studied microenvironments. Differences in the bacterial community structures in the phyllosphere, dermosphere and rhizosphere were observed along the altitudinal gradient, regardless of the plant species. In the lowland forest, the bacterial community associated with the phyllosphere was more similar between E. edulis and G. opposita. The rhizosphere bacterial community was more similar within each forest type than between forests, suggesting an effect of the forest physiognomy on the bacterial communities of the rhizosphere. Exploring the co-occurrence networks in the bacterial communities of each microenvironment it was observed that at the OTU level each microenvironment has different keystoine taxa that may regulate the ecological interactions in the community. Although the keystone taxa do not represent the most abundant OTUs in each microenvironment, they belong predominantly to Alphaproteobacteria and Gammaproteobacteria classes, suggesting that in the phyllosphere, dermosphere and rhizosphere the core microbiome cannot be determined at the OTU level, but possibly at higher taxonomic levels representing microbial groups having redundant functions.
|
2 |
Redes ecológicas em comunidades bacterianas da filosfera, dermosfera e rizosfera de espécies arbóreas da Mata Atlântica / Ecological networks in bacterial communities of phyllosphere, dermosphere and rhizosphere of tree species of the Atlantic ForestSilvia Eugenia Barrera Berdugo 02 September 2016 (has links)
A Mata Atlântica é uma floresta tropical úmida considerada um \"hotspot\" de biodiversidade e endemismo. É uma das florestas mais antigas do mundo e uma das maiores florestas da América, abrangendo aproximadamente 150 milhões de hectares em condições ambientais altamente heterogêneas. Estudos em diferentes ambientes da Mata Atlântica, nos núcleos de Picinguaba e Santa Virginia no Parque Estadual da Serra do Mar (PESM), têm sido realizados para determinar a diversidade de espécies e alterações da estrutura das comunidades de bactérias, tanto na filosfera, quanto na dermosfera e solo rizosférico. No entanto, pouco se sabe sobre as funções ecológicas dessas bactérias, e sobre as interações ecológicas entre as comunidades microbianas e os ambientes onde se desenvolvem. Assim o objetivo desse trabalho foi explorar as interações entre as comunidades microbianas da filosfera, dermosfera e solo coletado sobre a projeção da copa de duas espécies arbóreas da Mata Atlântica ao longo de um gradiente altitudinal, usando análises de co-ocorrência, a partir dos dados obtidos por pirosequenciamento da região V4 do gene rRNA 16S de bactérias, para determinar padrões de associações de bactérias em diferentes níveis taxonômicos em cada microambiente. Para esse estudo, foi proposta a hipótese de que mesmo que as condições ambientais sejam diferentes em cada tipo de floresta (gradiente altitudinal), pode existir grupos de bactérias específicos que co-ocorrem na filosfera, dermosfera ou solo das plantas, funcionando como taxons chaves na estruturação das comunidades bacterianas. Com base do sequenciamento dos genes rRNA 16S, as comunidades bacterianas associadas à filosfera e dermosfera de E. edulis e G. opposita nas diferentes florestas foram mais similares entre si do que as do solo. Actinobacteria, Firmicutes, Bacteroidetes e Proteobacteria foram mais abundantes em todos os microambientes estudados. Diferenças nas estruturas das comunidades bacterianas na filosfera, dermosfera e solo foram observadas ao longo do gradiente altitudinal, independente da espécie de planta. Na floresta de terras baixas, a comunidade bacteriana associada à filosfera foi mais similar entre E. edulis e G. opposita. No solo, a comunidade bacteriana foi mais similar dentro de cada tipo de floresta do que entre florestas, sugerindo um efeito da fisionomia da floresta nas comunidades de bactérias dos solos. Explorando as redes de co-ocorrência das comunidades bacterianas em cada microambiente observou-se que no nível de UTOs, cada microambiente têm diferentes táxons chaves que podem regular as interações ecológicas da comunidade. Embora táxons chaves não representam as UTOs mais abundantes em cada microambiente, eles pertencem, predominantemente às classes Alphaproteobacteria e Gammaproteobacteria, sugerindo que na filosfera, dermosfera e solo o core microbioma não pode ser definido ao nível de UTO, mas possivelmente a níveis taxonômicos mais elevados representando grandes grupos microbianos que apresentam funções redundantes. / The Atlantic Forest is a rainforest considered a hotspot of biodiversity and endemism. It is one of the oldest forests in the world and one of the largest forests of America, covering approximately 150 million hectares in highly heterogeneous environmental conditions. Studies in different environments of the Atlantic forest, in the Picinguaba and Santa Virginia areas in the Serra do Mar State Park (PESM) have been conducted to determine the species diversity and changes in the structure of the bacterial communities in the phyllosphere, dermosphere and rhizosphere. However, little is known on the ecological functions of these bacteria, and on the ecological interactions between microbial communities and the environment in which they develop. The aim of this study was to explore the interactions between the microbial communities of the phyllosphere, dermosphere and rhizosphere of two tree species of the Atlantic Forest along an altitudinal gradient. Co-occurrence analysis based on data obtained by pyrosequencing of the 16S rRNA gene V4 region of bacteria to determine patterns of bacterial associations in different taxonomic levels in each microenvironment. For this study, the hypothesis that even if the environmental conditions are different in each type of forest (altitudinal gradient), there may be specific groups of bacteria that co-occur in the phyllosphere, dermosphere or rhizosphere, functioning as keystone taxa in the bacterial communities. Based on the sequencing of 16S rRNA genes, bacterial communities associated with the E. edulis and G. opposita phyllosphere and dermosphere in different forests were more similar to each other than the rhizosphere. Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes were the more abundant taxa in all studied microenvironments. Differences in the bacterial community structures in the phyllosphere, dermosphere and rhizosphere were observed along the altitudinal gradient, regardless of the plant species. In the lowland forest, the bacterial community associated with the phyllosphere was more similar between E. edulis and G. opposita. The rhizosphere bacterial community was more similar within each forest type than between forests, suggesting an effect of the forest physiognomy on the bacterial communities of the rhizosphere. Exploring the co-occurrence networks in the bacterial communities of each microenvironment it was observed that at the OTU level each microenvironment has different keystoine taxa that may regulate the ecological interactions in the community. Although the keystone taxa do not represent the most abundant OTUs in each microenvironment, they belong predominantly to Alphaproteobacteria and Gammaproteobacteria classes, suggesting that in the phyllosphere, dermosphere and rhizosphere the core microbiome cannot be determined at the OTU level, but possibly at higher taxonomic levels representing microbial groups having redundant functions.
|
3 |
Environmental origin and compartmentalization of bacterial communities associated with Avicennia marina mangroves on the Red Sea coastEscobar prieto, Juan david 07 1900 (has links)
Mangrove forests are highly productive ecosystems widespread in tropical and subtropical coastlines, with a coverage of 75% of the world’s tropical shorelines. Mangrove plants developed specific physiological and morphological adaptation to thrive in such unique environments. Together with plant adaptations, mangroves develop a tight partnership with microorganisms, mainly bacteria and fungi, that form the so-called mangrove-microbiome. Plant-associated microorganisms are generally recruited by the root system (root tissues and rhizosphere) and the colonization process starts with the release of root-related exudates detected by the surrounding edaphic microorganisms that are attracted in the rhizosphere zone. Then, root surface selects those microorganisms that can enter the tissues as endophytes. The microorganisms recruited belowground can migrate through the plant tissues by using the plant vessels and may colonize the aboveground compartments of the plant.
Here, I aimed to evaluate the environmental origin and compartmentalization of the mangrove microbiome. To do this, I sampled bulk sediments, sea water, and mangrove plant compartments (root rhizosphere and endosphere, pneumatophores, shoot, leaves, flowers and propagules) of 20 gray mangrove trees (Avicennia marina L.) across two sites on the Red Sea coast of the King Abdullah University of Science and Technology (KAUST), Saudi Arabia. By high-throughput sequencing of the bacterial 16S rRNA gene, I showed that the bacterial assembly in A. marina plant compartments follows a clear niche partition process in which bacterial communities are actively recruited from the surrounding ecosystem (sediment and sea water) by the root system, and further distributed across the different plant organ and compartments. Moreover, the composition of microbiome detected had many similitudes with others previously described around the world, suggesting that certain bacteria represent a mangrove “core microbiome”. The conservation of microbiome composition, mainly driven by environmental and host selection, that beneficial bacteria provide to the plant and contribute to its growth and fitness by several mechanisms. Thus, the characterization and identification of mangrove microbiome can meliorate our knowledge regarding plant–microbe interactions, as well as put the bases for the development of Nature-based Solution (NBS) to enhance reforestation and rehabilitation of mangrove ecosystems
|
4 |
Possible Drivers in Endophyte Diversity and Transmission in the Tomato Plant Bacterial MicrobiomeVazquez, Ana M. January 2020 (has links)
No description available.
|
Page generated in 0.041 seconds