• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 18
  • 12
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 25
  • 25
  • 25
  • 16
  • 14
  • 14
  • 13
  • 12
  • 10
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Interaction of Pepper Experimental Lines with Phytophthora Crown and Root Rot in 2000

Matheron, Michael E., Crosby, Kevin M., Porchas, Martin 08 1900 (has links)
This study was conducted in the greenhouse at the Yuma Agricultural Center. Thirty-nine experimental lines of pepper from the Texas A&M pepper breeding collection were seeded and grown in the greenhouse in 8 fl. oz. plastic pots. When plants were 2 months old (Aug 8), the potting mix in each pot was infested with Phytophthora capsici. Plants were placed in 2-in. deep containers filled with water for 48 hr every 2 weeks, which maintained the potting mix in a saturated condition and encouraged disease development. The mean temperature of the potting mix from the time it was infested with Phytophthora capsici to the termination date of the study was 81 °F. Disease progress and the relative susceptibility of each test plant to Phytophthora crown and root rot was assessed by recording the date when each plant displayed necrosis around the lower stem and was permanently wilted. The environmental conditions during this study were very favorable for disease development. The mean duration of plant survival for pepper selections ranged from 9 to 51 days. If no plants had died due to Phytophthora crown and root rot, the duration of plant survival would have been 74 days. Most plant selections were readily attacked and killed by Phytophthora capsici. The experimental lines with the highest survival rating may be somewhat tolerant to disease; however, additional testing in further greenhouse and field trials is required to substantiate these preliminary results.
12

Reaction of Different Cultivars of Lettuce to Development of Powdery Mildew on Lettuce in 2001

Matheron, Michael E., Porchas, Martin 08 1900 (has links)
Seven different cultivars of lettuce were seeded and watered on Dec 1, 2000 at the Yuma Valley Agricultural Center. Cultivars were rated for severity of powdery mildew caused by Erysiphe cichoracearum at plant maturity (Mar 21). The highest levels of powdery mildew were found on the cultivars Winterhaven and Silverado, whereas lower disease severity was observed on Jackel, Cibola, RC-74 and Accolade. All tested cultivars would have required application of fungicides to reduce the amount of powdery mildew to acceptable levels. On the other hand, planting of lettuce cultivars with some disease tolerance may require less fungicide inputs to achieve acceptable disease control compared to planting susceptible cultivars.
13

Evaluation of Fungicides for Control of Powdery Mildew of Greenhouse Pepper

Olsen, M. W., Oehler, J., Rorabaugh, P. 08 1900 (has links)
A fungicide trial was established in a commercial style greenhouse at The University of Arizona Campus Agricultural Center in November 2000 to evaluate efficacy of several fungicides for control of powdery mildew on bell pepper. Treatments included five registered fungicides: Microthiol Special (micronized sulfur), Trilogy (neem extract), Flint (trifloxystrobin), Serenade (Bacillus subtilis QST713) and AQ10 (Ampelomyces quisqualis) applied as single treatments every 10-14 days to each of four replicates. In samples to determine the percentage of leaf area affected by powdery mildew lesions and the number of leaves infected within different treatments, Microthiol Special and Serenade were significantly different from non-treated controls, while Flint and AQ10 had fewer lesions and number of leaves infected but were not significantly different from the control. Although Trilogy was not different from the control, this treatment had more lesions and number of leaves infected than all treatments.
14

Activity of Actigard® on Development of Phytophthora Root and Crown Rot on Pepper Plants

Matheron, Michael E., Porchas, Martin 08 1900 (has links)
Phytophthora blight of peppers (Capsicum annuum), caused by the oomycete pathogen Phytophthora capsici, occurs in most regions where this crop is grown. The root and crown rot phase of the disease develops on plants in areas of the field where soil remains saturated with water after an irrigation or rainfall. Subsequent periods of soil saturation encourage further disease development. Actigard (acibenzolar-S-methyl), is a chemical activator of plant disease resistance, has no known direct antifungal effects and is thought to mimic salicylic acid in the signal transduction pathway that leads to systemic acquired resistance (SAR). Foliar applications of Actigard were evaluated for suppression of root and crown rot on pepper plants growing in the greenhouse in pots and inoculated with Phytophthora capsici or grown in soil naturally infested with the pathogen. Inhibition of stem cankers on pepper cultivars Bell Tower and AZ9 after two to four treatments with Actigard was significantly greater than on plants receiving a single treatment of the chemical. Inhibition of stem canker elongation on Bell Tower or AZ9 peppers ranged from 93.2 to 97.2% and 87.4 to 92.4% when plants were inoculated with P. capsici at 1 or 5 weeks, respectively, after the fourth application of Actigard. Survival of chile pepper plants in field soil naturally infested with P. capsici was significantly increased by three foliar applications of Actigard compared to nontreated plants in all three trials when pots were watered daily and in two of three trials when pots were flooded for 48 hr every 2 weeks. When soil was flooded every 2 weeks, establishing conditions highly favorable for disease development, plants treated once with Ridomil Gold survived significantly longer than those treated with Actigard. On the other hand, when water was provided daily without periodic flooding, establishing conditions less favorable for disease development, there was no significant difference in plant survival between the two chemicals in two of three trials. Growth of shoots on chile pepper plants treated with Actigard, watered daily and grown in soil containing P. capsici generally was greater than nontreated plants. Pepper plants subjected to periodic saturated soil conditions and receiving three foliar applications of Actigard plus a soil treatment of Ridomil Gold survived significantly longer and produced a greater amount of shoot growth than plants treated with either chemical alone. This work suggests that Actigard could be an important management tool for Phytophthora root and crown rot on pepper plants.
15

Influence of Salinity and Root-knot Nematode as Stress Factors in Charcoal Rot of Melon

Nischwitz, C., Olsen, Mary, Rasmussen, S. 08 1900 (has links)
Incidence of Charcoal rot, caused by the soil borne fungus Macrophomina phaseolina, may be increased in some crops by the addition of stress on the host caused by high salinity of soil or irrigation water and infection by plant pathogenic nematodes. Since both of these factors may be problematic in melon production in Arizona, studies were initiated to determine if higher salt concentrations of irrigation water and infection by Root-knot nematode (Meloidogyne incognita) may be involved in recent increased incidences of Charcoal rot of melon. In greenhouse trials, higher concentrations of salts in irrigation water significantly increased the percentage of plants that died due to Charcoal rot. However, no significant difference was found in the percentage of dead plants inoculated with both root-knot nematode and M. phaseolina compared to plants inoculated with M. phaseolina alone. Results of these trials indicate that salinity may be a factor in the increased incidence of Charcoal rot of melon, but that root-knot nematode infection may not play a role.
16

Evaluation of Lettuce Cultivars for Resistance to Fusarium Wilt in 2003

Matheron, Michael E., Tickes, Barry R., Porchas, Martin, Sanchez, Charles A., Didier, Louis G., Ford, Kevin P. 08 1900 (has links)
In the 2001-2002 production season, Fusarium wilt was observed for the first time in six different lettuce fields in the Gila and Dome Valley production areas of Yuma County, Arizona. The disease was found in 11 additional sites during 2002-2003. Fusarium wilt presents a serious threat to the health of the lettuce industry in Arizona. The only effective means of controlling Fusarium wilt of lettuce at this time is to avoid infested fields. On the other hand, Fusarium wilt in other crops, such as tomatoes and melons, is controlled effectively by planting cultivars resistant to the pathogen. The relative resistance of lettuce cultivars grown in the Arizona desert production region is unknown; therefore, a cultivar evaluation trial was established in a field known to contain the wilt pathogen, Fusarium oxysporum f.sp. lactucae. Tested cultivars were grouped into three different planting dates: Sep 7, Oct 17 and Dec 6, 2002. A majority of the cultivars within each planting date were those that would be planted in the desert at that time. Fusarium wilt was severe in the early planting of lettuce (Sep 7), moderate in the second planting (Oct 17) and very mild in the third planting (Dec 6). Disease severity was low in some lettuce cultivars in the second planting and most cultivars in the third planting. Among the types of lettuce tested, head lettuce was usually least resistant whereas romaine was most resistant. The data presented in this report are preliminary findings, subject to confirmation in another study planned for the next lettuce production season.
17

Effect of Messenger® on Chile Pepper Production and Bacterial Spot in 2001

Matheron, Michael E., Porchas, Martin 08 1900 (has links)
Messenger is based on naturally occurring proteins called harpins that trigger natural plant defense systems to protect against disease and pest damage as well as activating plant growth pathways for potential improvements in crop yield and quality. An experiment was established in a commercial chile pepper field in Cochise County to evaluate the effect of Messenger on chile pepper production and bacterial spot. Bacterial spot of pepper occurs wherever this crop is exposed to moisture due to rainfall or overhead irrigation. Foliar application of Messenger, Kocide 2000 + Maneb 75DF (a standard bacterial spot treatment) or Messenger + Kocide + Maneb was performed June 5, 19 and 28; July 16; and August 8 and 22. A foliar defoliation (bacterial spot) rating was performed September 5 and yield (weight and number of chile peppers) was determined September 20 and 21. Compared to nontreated plants, the mean weight of chile peppers harvested from plants treated with Messenger, Kocide + Maneb and Messenger + Kocide + Maneb increased 11, 15 and 24%, respectively, whereas the number of peppers increased 14, 15 and 21%, respectively. The severity of bacterial spot symptoms was numerically (but not significantly) lower on plants treated with Messenger, Kocide + Maneb and Messenger + Kocide + Maneb compared to nontreated plants.
18

Evaluation of Fungicides for Control of Powdery Mildew on Lettuce in 2002

Matheron, Michael E., Porchas, Martin 08 1900 (has links)
Powdery mildew on lettuce is caused by the fungus Erysiphe cichoracearum. This disease is favored by moderate to warm temperatures and dry weather conditions. Several potential new fungicides were evaluated for control of powdery mildew on lettuce in 2002. Powdery mildew appeared in our plots by February 15 and reached moderate levels of severity by plant maturity on March 6 to 8th. Nontreated lettuce plants were moderately infected with powdery mildew at plant maturity, whereas the level of disease was low to virtually nonexistent in plots treated with Microthiol Disperss, Rally, Quinoxyfen, Flint, and Rally alternated with Kaligreen. Furthermore, other tested products provided moderate suppression of powdery mildew. The future availability of one or more of the tested chemistries not currently registered for lettuce could help in efforts to control powdery mildew on this crop and to establish and maintain a fungicide resistance management program for plant disease control products.
19

Performance of Products for Management of Sclerotinia Leaf Drop of Lettuce in 2002

Matheron, Michael E., Porchas, Martin 08 1900 (has links)
Sclerotinia leaf drop in Arizona is caused by two soil-borne fungi, Sclerotinia minor and S. sclerotiorum. Moist soil and moderate temperature favor this disease. Some new products in development were evaluated for control of leaf drop on lettuce during the winter vegetable growing season of 2001-2002. Sclerotia of each pathogen were applied to plots after thinning and just before the first of two applications of test compounds. Significant reduction of Sclerotinia leaf drop caused by S. minor occurred in plots treated with Endura, whereas other products tested against this pathogen did not significantly reduce the level of disease compared to nontreated control plants. The highest level of disease reduction in plots infested by S. sclerotiorum was achieved by the fungicide Ronilan as well as the biological material Contans. Somewhat lower but still significant disease control was achieved with Endura on plots infested with S. sclerotiorum. In this field trial, Endura provided the best level of disease control in plots infested with S. minor, whereas Contans provided the best level of disease control in plots infested with S. sclerotiorum.
20

Comparison of Fungicides for Management of Downy Mildew of Broccoli in 2003

Matheron, Michael E., Porchas, Martin 08 1900 (has links)
Downy mildew of broccoli, cauliflower and cabbage is caused by the oomycete pathogen Peronospora parasitica. Cool moist environmental conditions favor the development of downy mildew on these crops. Several potential new fungicides were evaluated for control of this disease on broccoli in 2003. A moderate level of disease had developed by crop maturity. Actigard, Actigard alternated with Quadris, Acrobat+Maneb and DPX-KP481 were among the best treatments in this trial. Actigard is not a fungicide, but is classified as a plant activator. When applied to plants, this compound stimulates a defense response in plants to some diseases. Actigard also has performed well in previous trials. Several other new products and some chemistries that are currently available provided significant levels of disease control as well.

Page generated in 0.0924 seconds