• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intelligent signal/image processing for fault diagnosis and prognosis

Wang, Peng 08 1900 (has links)
No description available.
2

Sensor-based prognostics and structured maintenance policies for components with complex degradation

Elwany, Alaa H. 23 September 2009 (has links)
We propose a mathematical framework that integrates low-level sensory signals from monitoring engineering systems and their components with high-level decision models for maintenance optimization. Our objective is to derive optimal adaptive maintenance strategies that capitalize on condition monitoring information to update maintenance actions based upon the current state of health of the system. We refer to this sensor-based decision methodology as "sense-and-respond logistics". As a first step, we develop and extend degradation models to compute and periodically update the remaining life distribution of fielded components using in situ degradation signals. Next, we integrate these sensory updated remaining life distributions with maintenance decision models to; (1) determine, in real-time, the optimal time to replace a component such that the lost opportunity costs due to early replacements are minimized and system utilization is increased, and (2) sequentially determine the optimal time to order a spare part such that inventory holding costs are minimized while preventing stock outs. Lastly, we integrate the proposed degradation model with Markov process models to derive structured replacement and spare parts ordering policies. In particular, we show that the optimal maintenance policy for our problem setting is a monotonically non-decreasing control limit type policy. We validate our methodology using real-world data from monitoring a piece of rotating machinery using vibration accelerometers. We also demonstrate that the proposed sense-and-respond decision methodology results in better decisions and reduced costs compared to other traditional approaches.
3

Power efficiency of industrial equipment.

Veale, Kirsty Lynn. January 2011 (has links)
Power conservation has become a high priority to South African industries due to recent environmental assessments and electricity price hikes. This research aims to demonstrate to Industry the many simple and cost effective ways to increase their industrial efficiency with simple modifications, as well as making them more aware of common assembly errors that significantly increase power consumption. This has been accomplished with the design, construction and testing of a test rig capable of producing the desired test results which simulate Industry usage. A test rig was required to test certain energy efficient equipment. This dissertation contains an explanation of the tests required, as well as how they were conducted. These test requirements directed the design outcomes of the test rig. Due to the variety of equipment to be tested, and the accuracy required, the test rig had to be fully adjustable. The design process is explained in this dissertation, along with relevant theory with regard to the testing procedures. The testing procedures were designed to be as accurate as possible. The setup equipment and procedure is briefly explained to ensure an understanding of the capabilities of the test rig. This dissertation contains the results obtained from testing a variety of couplings, belts and motors under different conditions. The results obtained show the difference between the efficiency of a standard motor and that of a high efficiency motor. The efficiency comparison of the Poly V TM, Poly Chain® and SPB V-belts showed very distinct advantages and disadvantages of each belt. The coupling testing was conducted under conditions of misalignment, and resulted in distinct differences in the efficiencies of each coupling at different degrees of misalignments. The couplings tested were the Fenaflex®, the Quick-Flex®, and the Fenagrid® coupling. All results obtained were analyzed and discussed in the relevant sections. The results obtained showed that the high efficiency motor is significantly more efficient than the standard motor at full load, although at low loading, the motor efficiencies were very similar. The coupling tests showed the negative effects misalignment has on the efficiency of the Quick-Flex® and Fenagrid® coupling as well as the capability of the Fenaflex® coupling to withstand the effects of large misalignments without significant efficiency loss. v The belt testing revealed the advantages and disadvantages of each type of belt used. This showed that although the synchronous belt did not lose efficiency with decreased tension, it became unstable, and was difficult to keep on the pulley if not aligned correctly. The V-belts can handle low tension well. Prolonged use of the belts can cause them to stretch, lowering the tension into a “danger zone” that will cause the belts to slip. This slip can damage the belt and pulley. At the lower tension of the V-belt, although the efficiency increases slightly, the vibration of the slack side of the belt is significant, and can be dangerous as the belt could jump off the pulley. The Poly V TM belt has some of the advantages of the V-belt, except that it is unable to maintain its friction at low tension, as the belt width prevents it from being wedged into the grooves like the V-belt. The fluid coupling tests showed that the shock loading on a high inertia system can be significantly reduced with the aid of a fluid coupling. The reduced shock loading can reduce energy consumption, and increase the life of electric motors and the equipment that they drive by preventing excessive overloading. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.

Page generated in 0.0827 seconds