• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular studies on sweet protein mabinlin: thermal stability.

January 2000 (has links)
Leung Chun-wah. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 113-122). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Acknowledgment --- p.iii / Abstract --- p.v / Table of contents --- p.ix / List of abbreviations --- p.xiv / List of figures --- p.xvii / List of tables --- p.xix / Chapter 1 --- LITERATURE REVIEW --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Artificial sweeteners --- p.3 / Chapter 1.2.1 --- SACCHARIN --- p.3 / Chapter 1.2.2 --- cyclamate --- p.4 / Chapter 1.2.3 --- Aspartame --- p.4 / Chapter 1.2.4 --- acesulfame-k --- p.5 / Chapter 1.2.5 --- SUCRALOSE --- p.5 / Chapter 1.3 --- natural sweet plant proteins --- p.7 / Chapter 1.3.1 --- THAUMATIN --- p.7 / Chapter 1.3.2 --- MONELLIN --- p.10 / Chapter 1.3.3 --- CURCULIN --- p.11 / Chapter 1.3.4 --- PENTADIN AND BRAZZEIN --- p.11 / Chapter 1.3.5 --- MIRACULIN --- p.12 / Chapter 1.3.6 --- MABINLIN --- p.12 / Chapter 1.4 --- Genetic Engineering of Sweet Plant Protein --- p.19 / Chapter 1.4.1 --- biotechnological studies on thaumatin --- p.20 / Chapter 1.4.1.1 --- Protein modification and sweetness --- p.20 / Chapter 1.4.1.2 --- Transgenic expression in microbes --- p.21 / Chapter 1.4.1.3 --- Transgenic expression in higher plants --- p.23 / Chapter 1.4.2 --- BIOTECHNOLOGICAL STUDIES ON MONELLIN --- p.24 / Chapter 1.4.2.1 --- Gene modification and transgenic expression in microbes --- p.24 / Chapter 1.4.2.2 --- Transgenic expression in plants --- p.25 / Chapter 1.4.3 --- TRANSGENIC EXPRESSION OF MABINLIN IN PLANTS --- p.26 / Chapter 1.5 --- phaseolin and its regulatory sequences --- p.27 / Chapter 1.6 --- ARABIDOPSIS --- p.29 / Chapter 1.6.1 --- ARABIDOPSIS THALIANA as a model plant --- p.29 / Chapter 1.6.2 --- Transformation methods --- p.29 / Chapter 1.6.2.1 --- Direct DNA uptake --- p.30 / Chapter 1.6.2.2 --- Agrobacterium-mediated transformation --- p.31 / Chapter 1.6.2.3 --- In planta transformation --- p.31 / Chapter 2 --- GENKRAL INTRODUTION AND HYPOTHESIS --- p.22 / Chapter 2.1 --- General Introduction --- p.33 / Chapter 2.2 --- Hypothesis --- p.34 / Chapter 3 --- MOLECULAR STUDIES ON SWEET PROTEIN MARINLIN : THERMAL STABILITY --- p.28 / Chapter 3.1 --- Introduction --- p.38 / Chapter 3.2 --- Materials --- p.40 / Chapter 3.2.1 --- laboratory wares --- p.40 / Chapter 3.2.2 --- Equipments --- p.40 / Chapter 3.2.3 --- Chemicals --- p.40 / Chapter 3.2.4 --- commerical kits --- p.41 / Chapter 3.2.5 --- DNA primers --- p.42 / Chapter 3.2.6 --- DNA plasmids --- p.43 / Chapter 3.2.7 --- bacterial strains --- p.43 / Chapter 3.2.8 --- Plant materials --- p.44 / Chapter 3.2.9 --- Protein and Antibody --- p.44 / Chapter 3.3 --- Methods --- p.45 / Chapter 3.3.1 --- Transformation of Arabidopsis with mbliii and mbli genes --- p.45 / Chapter 3.3.1.1 --- Construction of mutant MBLIII and MBLI genes containing single codon mutation by megaprimer PCR --- p.45 / Chapter 3.3.1.2 --- Cloning of PCR-amplified MBLIII and MBLI cDNAs into vector pD3-8 --- p.48 / Chapter 3.3.1.3 --- In vitro site-directed mutagensis (for the construction of MBLIII and MBLI cDNAs containing single codon mutation) --- p.49 / Chapter 3.3.1.4 --- Cloning of the wild-type and mutated MBLIII and MBLI cDNA into vector pTZ / phas --- p.53 / Chapter 3.3.1.5 --- Confirmation of sequence fidelity and mutated codon in MBLIII and MBLI cDNA by DNA sequencing --- p.53 / Chapter 3.3.1.6 --- Transfer of wild-type MBLIII and MBLI cDNA flanked by phaseolin regulatory sequence into Agrobacterium binary vector --- p.55 / Chapter 3.3.1.7 --- Transformation of Agrobacterium with pBI / phas / MBLIII and pBI / phas / MBLI chimeric gene constructs --- p.57 / Chapter 3.3.1.8 --- Vacuum infiltration transformation of A rabidopsis --- p.58 / Chapter 3.3.1.9 --- Screening of homozygous transgenic Arabidopsis --- p.59 / Chapter 3.3.2 --- Expression analysis of MBLIII transgene --- p.61 / Chapter 3.3.2.1 --- GUS assay of transgenic plants --- p.61 / Chapter 3.3.2.2 --- Genomic DNA isolation from transgenic plants --- p.61 / Chapter 3.3.2.3 --- PCR amplification of transgene --- p.62 / Chapter 3.3.2.4 --- Total RNA isolation from transgenic Arabidopsis --- p.63 / Chapter 3.3.2.5 --- RT-PCR of total RNA from transgenic Arabidopsis --- p.64 / Chapter 3.3.2.6 --- Verification of the presence of mutagenic site and the fidelity of RNA transcript from transgenic Arabidopsis --- p.65 / Chapter 3.3.2.7 --- Protein extraction and tricine SDS-PAGE of putative transgenic protein from Arabidopsis --- p.65 / Chapter 3.3.2.8 --- N-terminal amino acid sequencing --- p.66 / Chapter 3.3.2.9 --- Isoelectric precipitation of MBL --- p.67 / Chapter 3.3.2.10 --- Production of polyclonal antibody against purified MBL --- p.67 / Chapter 3.3.2.11 --- Western-blotting and immunodectection of Arabidopsis protein by anti-MBL polyclonal antibody --- p.69 / Chapter 3.4 --- results & discussion --- p.71 / Chapter 3.4.1 --- Site-specific mutations of Arginine residue in mbliii cdna and glutamine in mbli cdna --- p.71 / Chapter 3.4.1.1 --- Megaprimer PCR --- p.71 / Chapter 3.4.1.2 --- Cloning into the seed-specific expression vector pD38 --- p.74 / Chapter 3.4.1.3 --- In vitro site-directed mutagenesis --- p.76 / Chapter 3.4.2 --- Construction of plant expression vectors containing chimeric MBLIII and MBLI --- p.80 / Chapter 3.4.2.1 --- Cloning of MBLIII and MBLI cDNAs into the seed-specific expression vector pTZ / phas --- p.80 / Chapter 3.4.2.2 --- Cloning into the plant expression vector pBI121 --- p.83 / Chapter 3.4.3 --- Generation of homozygous transgenic Arabidopsis --- p.84 / Chapter 3.4.3.1 --- Screening of transgenic R1 Arabidopsis --- p.84 / Chapter 3.4.3.2 --- Screening of transgenic R2 plants --- p.86 / Chapter 3.4.3.3 --- Screening of homozygous R3 transgenic plants --- p.88 / Chapter 3.4.4 --- Detection of MBLIII transgene in Arabidopsis --- p.89 / Chapter 3.4.4.1 --- Gus Assay --- p.89 / Chapter 3.4.4.2 --- Detection of transgene integration --- p.90 / Chapter 3.4.5 --- DETECTION of MBLIII TRANSCRIPT IN TRANSGENIC arabidopsis --- p.92 / Chapter 3.4.5.1 --- RT-PCR (Reverse-transcription polymerase chain reaction) --- p.92 / Chapter 3.4.5.2 --- Verification of the presence of the mutant codon and sequence fidelity of the RT-PCR product --- p.94 / Chapter 3.4.6 --- DETECTION OF MBL III PROTEIN IN TRANSGENIC arabidopsis --- p.97 / Chapter 3.4.6.1 --- Expression of MBL protein --- p.97 / Chapter 3.4.6.2 --- Isoelectric precipitation --- p.101 / Chapter 3.4.6.3 --- Assay of titers and quality of primary polyclonal antibody against purified MBL protein --- p.103 / Chapter 3.4.6.4 --- Western blot / Immunodetection --- p.106 / Chapter 4 --- GENERAL DISCUSSION --- p.109 / Conclusion --- p.112 / References --- p.113
2

Expression and subcellular localization of membrane anchored yellow fluorescent protein fusions in transgenic tobacco plants.

January 2004 (has links)
Fung Ka Leung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 83-93). / Abstracts in English and Chinese. / Thesis Committee --- p.ii / Statement --- p.iii / Acknowledgements --- p.iv / Abstract --- p.v / 摘要 --- p.vii / Table of Contents --- p.viii / List of Tables --- p.xii / List of Figures --- p.xiii / List of Abbreviations --- p.xv / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- An overview of the secretory pathway in eukaryotic cells --- p.2 / Chapter 1.2 --- The secretory pathway in plants --- p.4 / Chapter 1.2.1 --- Plant cells contain two functionally distinct vacuoles --- p.4 / Chapter 1.2.2 --- Three vesicular pathways to two vacuole --- p.6 / Chapter 1.2.3 --- Transport vesicles in the three vesicular pathways --- p.9 / Chapter 1.2.4 --- Vacuolar sorting determinants (VSDs) --- p.10 / Chapter 1.2.5 --- Vacuolar sorting receptors (VSRs) --- p.12 / Chapter 1.3 --- The PSVs in mature seeds --- p.15 / Chapter 1.3.1 --- Biogenesis of PSV --- p.15 / Chapter 1.3.2 --- The two chimeric integral membrane reporters --- p.16 / Chapter 1.3.3 --- Subcellular localization of the two chimeric integral membrane reporters in PSVs of mature tobacco seeds --- p.17 / Chapter 1.4 --- Project objectives --- p.19 / Chapter Chapter 2 --- Materials and Methods --- p.20 / Chapter 2.1 --- Construction of the YFP-BP-80 and the YFP- a -TIP reporters --- p.21 / Chapter 2.1.1 --- The pYFP-BP-80-K construct --- p.21 / Chapter 2.1.2 --- The pYFP- a -TIP-K construct --- p.22 / Chapter 2.2 --- Construction of GFP-RMR reporter --- p.23 / Chapter 2.2.1 --- Cloning of pGFP-RMR --- p.23 / Chapter 2.2.2 --- Cloning of pGFP-RMR-K --- p.23 / Chapter 2.3 --- Construction of pGONST1-YFP construct --- p.26 / Chapter 2.3.1 --- The pGONSTl-YFP construct --- p.26 / Chapter 2.4 --- Transformation of Agrobacterium by electroporation --- p.27 / Chapter 2.5 --- Tobacco transformation and selection --- p.28 / Chapter 2.5.1 --- Plant materials --- p.28 / Chapter 2.5.2 --- Tobacco transformation --- p.28 / Chapter 2.6 --- Screening of transgenic tobacco plants expressing YFP fusion proteins --- p.30 / Chapter 2.6.1 --- Kanamycin screening --- p.30 / Chapter 2.6.2 --- Extraction of genomic DNA from leaves --- p.30 / Chapter 2.6.3 --- PCR of genomic DNA --- p.31 / Chapter 2.7 --- Southern blot analysis of genomic DNA --- p.32 / Chapter 2.8 --- Western blot analysis of transgenic tobacco plants --- p.33 / Chapter 2.8.1 --- Extraction of total protein from tobacco leaves or seeds --- p.33 / Chapter 2.8.2 --- Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis --- p.34 / Chapter 2.9 --- Confocal immunofluorescence studies --- p.35 / Chapter 2.9.1 --- Preparation of sections --- p.35 / Chapter 2.9.2 --- Single labeling --- p.35 / Chapter 2.9.3 --- Double labeling with one polyclonal and one monoclonal antibodies --- p.36 / Chapter 2.9.4 --- Double labeling with two polyclonal antibodies --- p.36 / Chapter 2.9.5 --- Collection of images --- p.37 / Chapter 2.10 --- Chemicals --- p.38 / Chapter 2.11 --- Primers --- p.38 / Chapter 2.12 --- Bacterial strain --- p.38 / Chapter 2.13 --- Antibodies --- p.39 / Chapter 2.14 --- Growing condition of transgenic plants and determining the developmental stage of tobacco flowers --- p.39 / Chapter Chapter 3 --- Results --- p.41 / Chapter 3.1 --- Generation of transgenic tobacco plants --- p.42 / Chapter 3.2 --- PCR screening of transgenic tobacco plants --- p.46 / Chapter 3.3 --- Southern blot analysis --- p.48 / Chapter 3.4 --- Detection of the YFP fusion proteins in transgenic tobacco plants by western blot analysis --- p.50 / Chapter 3.4.1 --- Detection of the YFP fusion proteins in leaves --- p.50 / Chapter 3.4.2 --- Western blot analysis of vegetative tissues --- p.57 / Chapter 3.4.3 --- Western blot analysis of mature seeds --- p.59 / Chapter 3.5 --- Confocal immunofluorescence studies --- p.61 / Chapter 3.5.1 --- Detection of YFP signals in root tip cells --- p.61 / Chapter 3.5.2 --- Detection of YFP signals in developing seeds --- p.65 / Chapter 3.5.3 --- Subcellular localization of the YFP fusion proteins in mature seeds --- p.67 / Chapter Chapter 4 --- Discussion --- p.72 / Chapter Chapter 5 --- Summary and Future Perspectives --- p.77 / Chapter 5.1 --- Summary --- p.78 / Chapter 5.1.1 --- Generation of transgenic tobacco plants expressing the YFP fusion proteins --- p.78 / Chapter 5.1.2 --- Full-length fusion proteins and cleaved soluble YFP were detected in vegetative tissues --- p.79 / Chapter 5.1.3 --- Only cleaved soluble YFP was detected in mature seeds --- p.79 / Chapter 5.1.4 --- The two fusion proteins might localized in different compartments in developing seeds --- p.79 / Chapter 5.1.5 --- Both fusion proteins were localized within the PSVs of mature seeds --- p.80 / Chapter 5.2 --- Future perspectives --- p.81 / References --- p.83
3

Using transgenic plants as bioreactors to produce high-valued proteins.

January 2001 (has links)
Cheung Ming-yan. / Thesis submitted in 2000. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 169-185). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Acknowledgement --- p.vi / General abbreviations --- p.viii / Abbreviations of chemicals --- p.x / List of figures --- p.xii / List of tables --- p.xv / Table of Contents --- p.xvii / Chapter Chapter 1 --- General Introduction - Using transgenic plants as bioreactor --- p.1 / Chapter 1.1 --- Plant as Bioreactor --- p.1 / Chapter 1.1.1 --- Plant transformation historical milestones --- p.1 / Chapter 1.1.2 --- Applications of transgenic plants --- p.5 / Chapter 1.1.2.1 --- Examples of in situ Application --- p.5 / Chapter 1.1.2.2 --- Examples of ex situ application of transgenic plant --- p.9 / Chapter 1.2 --- Plant Hosts for Transformation: Arabidopsis thaliana and Glycine max --- p.18 / Chapter 1.2.1 --- Essential components for plant transformation --- p.18 / Chapter 1.2.1.1 --- Marker genes --- p.18 / Chapter 1.2.1.2 --- Promoters --- p.18 / Chapter 1.2.2 --- Arabidopsis thaliana --- p.20 / Chapter 1.2.2.1 --- Agrobacterium-mediated transformation --- p.20 / Chapter 1.2.2.2 --- Transformation methods for A. thaliana --- p.21 / Chapter 1.2.3 --- Glycine max (soybean) --- p.22 / Chapter 1.2.3.1 --- Soybean cultivars for transformation --- p.23 / Chapter 1.2.3.2 --- Soybean regeneration systems --- p.24 / Chapter 1.2.3.3 --- Soybean transformation systems --- p.26 / Chapter 1.3 --- Target Pharmaceutical and Agricultural Proteins: Lymphocytic choriomeningitis virus and Goldfish Growth hormones I and II --- p.29 / Chapter 1.3.1 --- Production of pharmaceutical proteins --- p.29 / Chapter 1.3.1.1 --- Lymphocytic choriomeningitis virus --- p.30 / Chapter 1.3.1.2 --- Nucleoprotein of LCMV --- p.33 / Chapter 1.3.2 --- Agricultural protein category --- p.34 / Chapter 1.3.2.1 --- Carassius auratus --- p.34 / Chapter 1.3.2.2 --- Growth hormones I and II --- p.35 / Chapter 1.4 --- Hypothesis and Objectives --- p.37 / Chapter Chapter 2 --- Materials and Methods --- p.38 / Chapter 2.1 --- Materials --- p.38 / Chapter 2.1.1 --- "Plants, bacterial strains and vectors" --- p.38 / Chapter 2.1.2 --- Chemicals and Regents --- p.43 / Chapter 2.1.3 --- Commercial kits --- p.44 / Chapter 2.1.4 --- Primers and Adaptors --- p.45 / Chapter 2.1.5 --- Equipments and Facilities used --- p.47 / Chapter 2.1.6 --- "Buffer, solution and medium" --- p.47 / Chapter 2.2 --- Methods --- p.48 / Chapter 2.2.1 --- Molecular Techniques --- p.48 / Chapter 2.2.1.1 --- Bacterial cultures for recombinant DNA and plant transformation --- p.48 / Chapter 2.2.1.2 --- Recombinant DNA techniques --- p.48 / Chapter 2.2.1.3 --- "Preparation and transformation of DH5a, DE3 and Agrobacterium competent cells" --- p.49 / Chapter 2.2.1.4 --- Gel electrophoresis --- p.52 / Chapter 2.2.1.5 --- "DNA, RNA and protein extractions" --- p.53 / Chapter 2.2.1.6 --- Generation of cRNA probes for Southern and Northern blot analyses --- p.56 / Chapter 2.2.1.7 --- Southern blot analysis --- p.56 / Chapter 2.2.1.8 --- Northern blot analysis --- p.57 / Chapter 2.2.1.9 --- Expression of Lymphocytic choriomeningitis virus nucleoprotein (LCMV NP) in bacterial system --- p.58 / Chapter 2.2.1.10 --- Western blot analysis for LCMV NP --- p.59 / Chapter 2.2.1.11 --- Protein dot blot for detecting the presence of recombinant LCMV-NP generated from transgenic plants --- p.62 / Chapter 2.2.1.12 --- PCR techniques --- p.62 / Chapter 2.2.1.13 --- Sequencing --- p.63 / Chapter 2.2.2 --- Plant tissue culture and transformation --- p.64 / Chapter 2.2.2.1 --- Arabidopsis thaliana --- p.64 / Chapter 2.2.2.2 --- Soybean --- p.65 / Chapter 2.2.3 --- In vitro transcription and translation of target genes in rabbit reticulocyte and wheat germ systems --- p.68 / Chapter 2.2.3.1 --- In vitro transcription of target genes with with Ribomix large scale RNA production systems-T7 and SP6 (Promega) --- p.68 / Chapter 2.2.3.2 --- In vitro translation with rabbit reticulocyte lysate and wheat germ extract --- p.69 / Chapter Chapter 3 --- Results --- p.71 / Chapter 3.1 --- Expression of Lymphocytic choriomeningitis virus nucleoprotein (LCMV NP) and goldfish growth hormones I and II (GHI and GHII) in transgenic Arabidopsis thaliana --- p.71 / Chapter 3.1.1 --- Expression of LCMV-NP in transgenic Arabidopsis thaliana --- p.71 / Chapter 3.1.1.1 --- Cloning of the gene encoding LCMV NP into the binary vector system W104 --- p.71 / Chapter 3.1.1.2 --- Transformation of W104-LCMV-NP into the Agrobacterium GV3101/pMP90 --- p.78 / Chapter 3.1.1.3 --- Transformation of LCMV-NP cDNA into Arabidopsis thaliana --- p.80 / Chapter 3.1.1.4 --- Southern blot and Northern blot analyses of transgenic plant containing the LCMV-NP cDNA --- p.83 / Chapter 3.1.1.5 --- Production of recombinant LCMV-NP protein in DE3 cells --- p.90 / Chapter 3.1.1.6 --- Detection of recombinant LCMV-NP protein in transgenic A.thaliana --- p.98 / Chapter 3.1.2 --- Expression of goldfish growth hormones I and II (GHI and GHII) in transgenic Arabidopsis thaliana --- p.105 / Chapter 3.1.2.1 --- "Screening of homozygous lines of goldfish, Carassius auratus, growth hormones transgenic Arabidopsis thaliana" --- p.105 / Chapter 3.1.2.2 --- Southern blot and Northern blot analyses of transgenic plant containing the LCMV-NP cDNA --- p.109 / Chapter 3.1.2.3 --- Detection of recombinant GHI and GHII from transgenic plant --- p.112 / Chapter 3.2 --- In vitro transcription and translation of target genes in rabbit reticulocyte and wheat germ systems --- p.117 / Chapter 3.2.1 --- Subcloning of target genes in pGEM-3Zf(+) vector --- p.117 / Chapter 3.2.1.1 --- Subcloning of LCMV-NP fragment into pGEM-3Zf(+) vector --- p.117 / Chapter 3.2.1.2 --- Subcloning of goldfish GHI and GHII fragments into pGEM-3Zf(+) vector --- p.120 / Chapter 3.2.2 --- In vitro transcription of target genes with Ribomix large scale RNA production systems-T7 and SP6 --- p.125 / Chapter 3.2.3 --- In vitro translation with rabbit reticulocyte lysate and wheat germ extract systems --- p.128 / Chapter 3.3 --- Establishment of Glycine max regeneration and transformation systems --- p.130 / Chapter 3.3.1 --- The Establishment of soybean regeneration system --- p.130 / Chapter 3.3.2 --- Establishment of soybean transformation system --- p.133 / Chapter 3.3.2.1 --- Definition of transformation efficiency --- p.133 / Chapter 3.3.2.2 --- Effects of plant hosts --- p.136 / Chapter 3.3.2.3 --- Effects of Agrobacterium strains --- p.138 / Chapter 3.3.2.4 --- The application of vacuum infiltration --- p.139 / Chapter 3.3.2.5 --- Effect of kanamycin --- p.140 / Chapter 3.3.2.6 --- Effect of cocultivation duration and light/ dark treatment during germination --- p.141 / Chapter 3.3.2.7 --- Application of the detergent Silwet-77 --- p.142 / Chapter 3.3.3 --- Verification of transformation results by PCR screening --- p.143 / Chapter Chapter 4 --- Discussion --- p.147 / Chapter 4.1 --- "Expression of LCMV-NP, GHI and GHII in A. thaliana" --- p.148 / Chapter 4.2 --- Establishing a soybean transformation system --- p.157 / Chapter 4.2.1 --- Plant hosts and explants --- p.158 / Chapter 4.2.2 --- Regeneration of explants --- p.159 / Chapter 4.2.3 --- Agrobacterium strains --- p.161 / Chapter 4.2.4 --- Bacteria-plant interaction --- p.161 / Chapter 4.2.5 --- Transient versus stable transformation --- p.165 / Chapter 4.3 --- Conclusion and perspective --- p.167 / References --- p.169 / Appendix --- p.186
4

Manipulation of nitrogen sink-source relationship in plants.

January 2006 (has links)
Chiao Ying Ann. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 127-140). / Abstracts in English and Chinese. / Thesis Committee --- p.I / Statement --- p.II / Abstract --- p.III / 摘要 --- p.V / Acknowledgements --- p.VII / Abbreviations --- p.IX / Abbreviation of chemicals --- p.XI / Table of Contents --- p.XII / List of figures and tables --- p.XVIII / Chapter Chapter 1. --- Literature review / Chapter 1.1 --- Significances of manipulation of nitrogen sink-source relationship --- p.1 / Chapter 1.2 --- Nitrogen sink-source relationship in plants --- p.2 / Chapter 1.3 --- Aspartate family amino acid metabolism --- p.5 / Chapter 1.3.1 --- Asparagine metabolism --- p.9 / Chapter 1.3.1.1 --- "Asparagine synthetase (AS, EC 6.3.5.4)" --- p.9 / Chapter 1.3.1.2 --- "Asparaginase (ANS, EC 3.5.1.1)" --- p.10 / Chapter 1.3.2 --- Metabolism of aspartate-derived essential amino acids --- p.10 / Chapter 1.3.2.1 --- "Aspartate kinase (AK, EC 2.7.2.4)" --- p.10 / Chapter 1.3.2.2 --- "Homoserine dehydrogenase (HSD, EC 1.1.1.3)" --- p.12 / Chapter 1.3.2.3 --- "Dihydrodipicolinate synthase (DHPS, EC 4.2.1.52)" --- p.13 / Chapter 1.3.2.4 --- "Lysine a-ketoglutarate reductase (LKR, EC 1.5.1.7)" --- p.14 / Chapter 1.3.2.5 --- "Threonine synthase (TS, EC 4.2.3.1)" --- p.15 / Chapter 1.3.2.6 --- Cystathionine γ-synthase (CGS,EC 2.5.1.48) --- p.16 / Chapter 1.3.2.7 --- Threonine deaminase (TD,EC 4.3.1.19) --- p.17 / Chapter 1.4 --- Previous attempts to manipulate seed protein quantity and quality --- p.18 / Chapter 1.4.1 --- Enhancement of amino acids transported from source to sink --- p.18 / Chapter 1.4.2 --- Redirection of metabolic pathways to increase target amino acids --- p.19 / Chapter 1.4.2.1 --- Production of aspartate by Aspartate Aminotransferase (AAT) --- p.24 / Chapter 1.4.2.2 --- Deregulation of AK to increase the common substrate for all essential aspartate family amino acids --- p.25 / Chapter 1.4.2.3 --- Inhibition of TS and enhancement of CGS to increase Met biosynthesis --- p.25 / Chapter 1.4.2.3.1 --- Inhibition of TS --- p.26 / Chapter 1.4.2.3.2 --- Enhancement of CGS --- p.26 / Chapter 1.4.2.4 --- Deregulation of DHPS and reduction of lysine catabolism to increase lysine content --- p.27 / Chapter 1.4.2.4.1 --- Deregulation of DHPS --- p.28 / Chapter 1.4.2.4.2 --- Reduction of Lys catabolism --- p.29 / Chapter 1.4.2.3.3 --- Deregulation of DHPS and reduction of LKR --- p.29 / Chapter 1.4.3 --- Expression of seed storage proteins to entrap the free amino acids --- p.30 / Chapter 1.5 --- Expression of multiple transgenes in plants --- p.34 / Chapter 1.5.1 --- Significance of multiple genes manipulation in seed quality improvement --- p.34 / Chapter 1.5.2 --- Difficulties in introduction of multiple genes into plant genomes --- p.34 / Chapter 1.5.3 --- Recent advances in introduction of multiple genes into plant genome --- p.35 / Chapter 1.6 --- Global nitrogen regulators in plants --- p.36 / Chapter 1.6.1 --- Global regulation of nitrogen metabolism --- p.36 / Chapter 1.6.2 --- General amino acid control by GCN system --- p.38 / Chapter 1.6.3 --- General amino acid control in plants --- p.39 / Chapter 1.6.4 --- GCN system in plants --- p.41 / Chapter 1.7 --- Hypothesis and specific objectives of this study --- p.42 / Chapter Chapter 2 --- Materials and methods --- p.46 / Chapter 2.1 --- Materials --- p.46 / Chapter 2.1.1 --- "Vectors, bacterial strains and plants" --- p.46 / Chapter 2.1.2 --- Chemicals and reagents used --- p.49 / Chapter 2.1.3 --- "Buffer, solution, gel and medium" --- p.49 / Chapter 2.1.4 --- Commercial kits used --- p.49 / Chapter 2.1.5 --- Equipments and facilities used --- p.49 / Chapter 2.2 --- Methods --- p.50 / Chapter 2.2.1 --- Molecular techniques --- p.50 / Chapter 2.2.1.1 --- DNA gel electrophoresis --- p.59 / Chapter 2.2.1.2 --- PCR technique --- p.50 / Chapter 2.2.1.3 --- Restriction digestion --- p.50 / Chapter 2.2.1.4 --- Ligation (for sticky-end ligation) --- p.51 / Chapter 2.2.1.5 --- DNA purification --- p.51 / Chapter 2.2.1.6 --- DNA sequencing --- p.51 / Chapter 2.2.1.7 --- Transformation of competent E. coli cells --- p.52 / Chapter 2.2.1.8 --- Preparation of plasmid from bacterial cells --- p.53 / Chapter 2.2.1.9 --- Transformation of competent Agrobacterium tumefaciens cells --- p.53 / Chapter 2.2.1.10 --- DNA extraction from plant tissue (Small-scale) --- p.54 / Chapter 2.2.1.11 --- RNA extraction from plant tissue --- p.55 / Chapter 2.2.2 --- Growth conditions of A. thaliana --- p.55 / Chapter 2.2.2.1 --- Surface sterilization of A. thaliana seeds --- p.55 / Chapter 2.2.2.2 --- Growing A. thaliana --- p.55 / Chapter 2.2.3 --- Characterization of transgenic A. thaliana with altered sink-source relationship --- p.57 / Chapter 2.2.3.1. --- Determination of amino acid contents in seeds --- p.57 / Chapter 2.2.3.2. --- Expression study of developing siliques of transgenic lines --- p.58 / Chapter 2.2.3.2.1 --- Tagging siliques of different developmental stages --- p.58 / Chapter 2.2.3.2.2 --- Extraction of silique RNA --- p.58 / Chapter 2.2.3.2.3 --- cDNA synthesis --- p.58 / Chapter 2.2.3.2.4 --- Real-time PCR --- p.59 / Chapter 2.2.4 --- Characterization of transgenic A. thaliana overexpressing GCN2 --- p.60 / Chapter 2.2.4.1 --- Gene expression study of vegetative tissues by real-time PCR --- p.60 / Chapter 2.2.4.2 --- Gene expression study of developing siliques by real-time PCR --- p.61 / Chapter 2.2.5 --- Making transgenic A. thaliana --- p.61 / Chapter 2.2.5.1 --- Cloning of multigene construct --- p.61 / Chapter 2.2.5.1.1 --- Subcloning of target genes into donor vectors --- p.61 / Chapter 2.2.5.1.1.1 --- Cloning of LRP into donor vector VS --- p.61 / Chapter 2.2.5.1.1.2 --- Cloning of dapA into donor vector SV --- p.64 / Chapter 2.2.5.1.1.3 --- Cloning of ansB into donor vector VS --- p.67 / Chapter 2.2.5.1.1.4 --- Cloning of antisense LKR fragment into donor vector SV --- p.70 / Chapter 2.2.5.1.2 --- Preparation of phosphorylated linkers --- p.73 / Chapter 2.2.5.1.3 --- Introduction of target genes to acceptor vector --- p.73 / Chapter 2.2.5.2 --- Agrobacterium-mediated transformation of A. thaliana via Vacuum infiltration --- p.78 / Chapter 2.2.5.3 --- Screening of transformants --- p.79 / Chapter Chapter 3. --- Results --- p.80 / Chapter 3.1 --- Characterization of transgenic lines with altered sink-source relationship --- p.80 / Chapter 3.1.1 --- Amino acid analysis of mature seeds of transgenic lines --- p.80 / Chapter 3.1.1.1 --- Aspartate family amino acids levels remain steady in seeds of transgenic plants --- p.83 / Chapter 3.1.1.2 --- Increase in seed Met content in Met-rich protein expressing transgenic plants --- p.85 / Chapter 3.1.1.3 --- Increase in seed Lys content in phas-dapA/phas-LRP transgenic plants --- p.87 / Chapter 3.1.2 --- Gene expression study of transgenic line --- p.89 / Chapter 3.1.2.1 --- Down-regulation of akthr1 and akthr2 in transgenic plants with altered N sink-source relationship --- p.89 / Chapter 3.1.2.2 --- Down regulation of GCN2 in transgenic plants with altered N sink-source relationship --- p.90 / Chapter 3.1.2.4 --- Expression study of other genes in aspartate family pathway --- p.90 / Chapter 3.2 --- Characterization of GCN2 overexpressing line --- p.93 / Chapter 3.2.1 --- Gene expression study of seedlings of GCN2 overexpressing plants --- p.93 / Chapter 3.2.1.1 --- Increased GCN2 expression by azaserine treatment --- p.93 / Chapter 3.2.1.2 --- Increased akthrl and akthr2 expression in GCN2 overexpressing plants --- p.96 / Chapter 3.2.1.3 --- Expression study of other genes in aspartate family pathway --- p.96 / Chapter 3.2.2 --- Gene expression study of GCN2 overexpressing plants during seed development --- p.98 / Chapter 3.3 --- Construction of transgenic plants by multigene assembly system --- p.100 / Chapter 3.3.1 --- Successful construction of recombinant plasmid carrying four target genes --- p.100 / Chapter 3.3.2 --- Transformation of A. thaliana with multigene vector --- p.103 / Chapter Chapter 4 --- Discussion --- p.104 / Chapter 4.1 --- Characterization of transgenic plants with altered sink-source relationship of aspartate family amino acid metabolism --- p.104 / Chapter 4.1.1 --- Total content of aspartate family amino acids remains steady in transgenic lines --- p.105 / Chapter 4.1.2 --- Methionine content increases in phas-PN2S and phas-MetL transgenic plants --- p.106 / Chapter 4.1.3 --- Relative lysine content increases in phas-dapA/phas-LRP transgenic plants --- p.107 / Chapter 4.1.4 --- Coordinated regulation of gene expressions of akthrl and akthr2 with GCN2 expression in transgenic plants with altered sink-source relationship --- p.109 / Chapter 4.2 --- GCN system in plants --- p.110 / Chapter 4.2.1 --- Transcriptional regulation of GCN2 in A. thaliana --- p.110 / Chapter 4.2.2 --- Regulation of amino acid biosynthesis by GCN system --- p.111 / Chapter 4.2.2.1 --- Regulation of akthrl and akthr2 by GCN2 --- p.111 / Chapter 4.2.2.2 --- GCN4 homolog in plants? --- p.112 / Chapter 4.2.2.3 --- Regulation of amino acid metabolism by GCN system --- p.113 / Chapter 4.3 --- Generation of transgenic plants with a combination of altered sink- source relationship --- p.114 / Chapter Chapter 5. --- Conclusion and Future Prospective --- p.116 / Appendix I: The major chemicals and reagents used in this research --- p.118 / "Appendix II: Major buffers, solutions and mediums used in this research" --- p.120 / Appendix III: Commercial kits used in this research --- p.125 / Appendix IV: Major equipment and facilities used in this research --- p.126 / References --- p.127

Page generated in 0.0905 seconds