Spelling suggestions: "subject:"plant secondary metabolism"" "subject:"slant secondary metabolism""
1 |
Dynamika obsahu sekundárních metabolitů v rostlinách během vegetační sezóny (Artemisia sp.) / Seasonal variability of plant secondary metabolism (Artemisia sp.)Koutská, Barbora January 2018 (has links)
Plant secondary metabolites (SM) are widely used by humans in many ways (pharmacy, biotechnology etc.). For making their use even more effective, it is important to know the seasonality of these chemicals in plants and what affect those changes. Three Artemisia species (Artemisia annua, A. absinthium, A. vulgaris) were cultivated during one vegetation season (from April to September 2016). Plant growth parameters and the beginning of their generative stages were observed, and leaf samples were collected regularly. Samples of some plants were collected repeatedly. A generalist herbivore (migratory locust), was used as a proxy for studying changes in plant secondary metabolism during the vegetation season. The results proved presence of defence secondary metabolites in plants except A. vulgaris species where the role of SM in defence was not shown. Levels of SM changed nonlinearly during the vegetational season and were time-dependent. Plant size did not influence the levels of SM in plants. Levels of SM were low at the beginning of the experiment followed by rapid increase and remaining on maximal levels. The plants which lost their biomass repetitively grew slowly and bloomed later than the plants which were clipped only once. A delay trend showing seasonality of the plant SM was not proved. In...
|
2 |
Over-expressing ArabidopsisArabidopsis Myb transcription factors in Salvia stenophylla and sugarcane and development of micropropagation protocol for Salvia repensLekgari, Goitsemang Lorato Portia 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Biotechnology is an important tool that is used to isolate and characterise genes. It is also used to produce clones that are genetically and phenotypically similar. Many Arabidopsis thaliana transcription factors have been isolated and characterised, but many have yet to be fully described. MYB proteins are members of a super-family of multifunctional transcription factors that can also interact with other transcription factors in the control of pathways. To date, more than 126 AtMYBs have been identified, but most have not been fully characterised, particularly in terms of the molecular role(s) they play in plants. Arabidopsis thaliana MYB3, MYB6, MYB7, MYB8 and MYB32 have been reported to be negative regulators of general phenylpropanoid metabolism. It has been reported that the five transcription factors mentioned above are likely to negatively regulate flavonoid biosynthesis, even though they may have different target genes. Studies on AtMYB13, AtMYB14 and AtMYB15 reported that they are likely regulators of general phenylpropanoid metabolism. The mentioned roles of the eight AtMYB transcription factors means that they can be manipulated in order to see what effect they have on primary and secondary metabolites in plants.
The transcription factors ligated into the pUBI510-GRFCA vector were then used to transform sugarcane callus (Chapter 3). Sugarcane produces sucrose which makes up 70% of the sugar produced in the world, making sugarcane a commercially important and profitable plant. The sugarcane callus was transformed via particle bombardment. The transcription factors AtMYB3, AtMYB6, AtMYB7, AtMYB13 and AtMYB32 were successfully incorporated into the genomic DNA of the sugarcane callus. The data obtained for callus over-expressing AtMYB3, AtMYB13 and AtMYB32 on solid media and the callus in liquid media were contradictory (i.e callus on solid media producing more sucrose than the wildtype whereas the same transgenic line will poduce less sucrose that the wildtype in liquid media or vice versa). However, AtMYB13 transgenic lines produced more sucrose than the wildtype. Transgenic lines of AtMYB7 all produced less sucrose as compared to the wildtype both on solid and in liquid media. The transcription factors which resulted in increased production of starch when over-expressed were AtMYB7 and AtMYB13. The data obtained for AtMYB6 transgenic lines was highly inconsistent in lines grown on same media and across the two media. The effects of these transcription factors in the overall metabolism of the sugarcane callus, either on MSC3 solid or liquid media, could not be fully determined from the GC-MS analysis as there was no consistent phenotypic effect between different transgenic lines for any of the MYB transcription factors used.
In Chapter 4, a micropropagation strategy was developed and phytochemicals and their biological activities were determined for the medicinal plant Salvia repens. Salvia plants have been found to be medicinally important due to the secondary metabolites, particularly the essential oils that they produce. The plant extracts have been found to have many biological activities such as antibacterial, anti-inflammatory, antioxidant and anticancer activities. Salvia repens was successfully germinated in vitro,with 60% germination being achieved in MS media containing 1x10-5 times diluted smoke water following scarification for 12 min in 75% (v/v) H2SO4. Success rates of 100% were achieved in the hardening off process when the seedlings were moved into the greenhouse. Germination of S. repens ex vitro was 100% in an autoclaved soil mixture of 1:1 (v/v) sand and vermiculite. Importantly the medicinal value of S. repens produced in vitro or ex vitro was not lost as the GC-MS metabolite analysis showed that the plants produced the chemicals that are medicinally important. Metabolite extracts of S. repens were for the first time reported to be active against fungi with MIC values lower than 1 mg/ml over 4-5 d period against four Fusarium spp. tested.
Lastly (Chapter 5), transcription factors AtMYB6 and AtMYB13 were used to trasnform Salvia stenophylla via Agrobacterium-mediated transformation, in order to determine whether the over-expression of these transcription factors could up-regulate the production of medicinally and commercially important secondary metabolites in S. stenophylla. Whilst both A. tumefaciens and A. rhizogenes strains were utilised for the transformation procedure, transformation was only achieved using A. rhizogenes and no transformants could be generated from the A. tumefaciens-treated material. Transgenic hairy roots did not produce any of the medicinally important metabolites. The GC-MS analysis of the transgenic root material identified mainly sugars and other primary metabolites. / AFRIKAANSE OPSOMMING: Biotegnologie is 'n belangrike instrument wat gebruik kan word om gene te isoleer en te karakteriseer. Dit word ook gebruik om klone wat geneties en fenotipies identies is te produseer. Baie Arabidopsis thaliana transkripsiefaktore is al geïsoleer en gekarakteriseer, maar baie moet nog volledig beskryf word. MYB proteïene is lede van 'n super-familie van multifunksionele transkripsiefaktore wat ook interaksie het met ander transkripsiefaktore tydens die beheer van metaboliese weë. Tot op hede is meer as 126 AtMYBs geïdentifiseer, maar die meeste is nie volledig gekarakteriseer nie, veral nie ten opsigtigte van die molekulêre rol(le) wat hulle in plante speel nie. Arabidopsis thaliana MYB3, MYB6, MYB7, MYB8 en MYB32 is gevind om negatiewe reguleerders van algemene fenielpropanoied-metabolisme te wees. Daar is ook berig dat dié vyf transkripsiefaktore moontlik flavenoied-biosintese negatief kan reguleer, selfs al kan hulle verskillende teikengene hê. Studies op AtMYB13, AtMYB14 en AtMYB15 het berig dat hulle waarskynlik reguleerders van algemene fenielpropanoied-metabolisme is. Die genoemde rolle van die agt AtMYB transkripsiefaktore beteken dat hulle gemanipuleer kan word om te bepaal watter effek hulle op primêre en sekondêre metaboliete in plante het.
Die transkripsiefaktore, wat in die pUBI510-GRFCA vektor geligeer was, is toe gebruik om suikerriet-kallus te transformeer (Hoofstuk 3). Suikerriet vervaardig sukrose wat tot 70% van die suiker wat in die wêreld geproduseer word opmaak. Dít maak suikerriet 'n kommersieel belangrike en winsgewende plant. Die suikerriet-kallus is getransformeer deur middel van partikel-bombardering. Die transkripsiefaktore AtMYB3, AtMYB6, AtMYB7, AtMYB13 en AtMYB32 was suksesvol in die DNA van die suikerriet-kallus opgeneem. Data wat verkry was vir kallus wat AtMYB3, AtMYB13 en AtMYB32 ooruitgedruk het op soliede media en kallus in vloeibare medium was teenstrydig (m.a.w. kallus op soilede media wat meer sukrose as die wildetipe op soliede media geproduseer het, terwyl dieselfde transgeniese lyn minder sukrose as die wildetipe geproduseer het in vloeibare medium, en anders om). Nietemin, het AtMYB13 transgeniese lyne meer sukrose geproduseer as die wildetipe. Transgeniese lyne van AtMYB7 het almal minder sukrose geproduseer as die wildetipem op beide soliede en vloiebare media. Die transkriopsiefaktore wat gelei het tot 'n styging in stysel produksie wanneer hulle ooruitgedruk was was AtMYB7 en AtMYB13. Data wat verkry is van die AtMYB6 transgeniese lyne was hoogs veranderlik in lyne wat op dieselfde medium gegroie was en oor die twee media. Die effek van hierdie transkripsiefaktore op die algehele metabolisme van die suikerriet-kallus, hetsy op MSC3 soliede of vloeibaremedia, kon egter nie van die GC-MS analise ten volle bepaal word aangesien daar geen konsekwente fenotipiese effek tussen die verskillende transgeniese lyne vir enige van die gebruikte MYB transkripsiefaktore was nie.
In Hoofstuk 4 was ‘n mikropropagerings strategie ontwikkel. Fitochemikalieë en hul biologiese aktiwiteite was ook bepaal vir die medisinale plant Salvia repens. Salvia plante is gevind om medisinaal belangrik te wees as gevolg van die sekondêre metaboliete, veral die essensiële olies, wat hulle produseer. Dit is ook bevind dat die plant-ekstrakte baie biologiese aktiwiteite soos anti-bakteriese, anti-inflammatoriese, anti-oksidant en anti-kanker aktiwiteite het. Salvia repens is suksesvol ontkiem in vitro, met 60% ontkieming wat bereik is in MS media met 1x10-5 maal verdunde rook-water na insnyding vir 12 min in 75% (v/v) H2SO4. Suksessyfers van 100% was behaal in die afhardingsproses wanneer die saailinge na die glashuis verskuif was. Ontkieming van S. repens ex vitro was 100% in 'n geoutoklaveerde grondmengsel van 1:1 (v/v) sand en vermikuliet. Gewigtig het die medisinale waarde van S. repens wat in vitro of ex vitro geproduseer was nie verlore gegaan nie. Die GC-MS data metaboliete analise het aangetoon dat die plante die medisinaal belangrike chemikalieë geproduseer het. Metaboliet-ekstrakte van S. repens was vir die eerste keer na berig aktief teen swamme, met MIK waardes laer as 1mg/ml oor ‘n tydperk van 4-5 d, teen vier Fusarium spp wat getoets was.
Laastens (Hoofstuk 5), transkripsiefaktore AtMYB6 en AtMYB13 was gebruik om Salvia stenophylla te transformeer deur Agrobacterium-bemiddelde transformasie, om sodoende te bepaal of die ooruitdrukking van hierdie transkripsiefaktore die produksie van medisinale en kommersieël-belangrike sekondêre metaboliete in S. stenophylla kan verhoog. Alhoewel beide A. tumefaciens en A. rhizogenes stamme gebruik was vir die transformasie proses, kon transformasie slegs deur die gebruik van A. rhizogenes bereik word. Geen transformante kon gegenereer word vanuit die A. tumefaciens behandelde materiaal nie. Transgeniese harigewortels het geen van die medisinaal belangrike metaboliete vervaardig nie. Die GC-MS analise van die transgeniese wortel materiaal het hoofsaaklik suikers en ander primêre metaboliete geïdentifiseer.
|
Page generated in 0.095 seconds