• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lead and cadmium uptake by corn (Zea mays L.) from two Quebec soils.

Culley, John Laurence Benjamin January 1976 (has links)
No description available.
2

Growth responses within the Genus Cyperus exposed to aluminium and iron in hydroponics

Ayeni, Olutoyosi Olaide January 2016 (has links)
Thesis (DTech (Environmental Health))--Cape Peninsula University of Technology, 2016. / Generally, aluminium (Al) is required as a micronutrient by plants. The metabolism of Al within the plant can exert a number of effects within the plant. These include: interfering with cell division in both root tips and lateral roots, increasing cell wall rigidity, maintaining the correct cellular redox state, as well as the various other physiological and growth responses. Al is one of the most abundant elements in the earth’s crust and becomes toxic in many plants when the concentration is greater than 2-3 ppm, where the soil has a pH<5.5. Iron (Fe) is an equally important element, and the toxicity of this metal possesses constraints primarily on wetland plants growing in acidic soils that have high reducible iron content. The impact of metal toxicity (Al and Fe) requires an understanding of many aspects related to Al and Fe uptake, transport and distribution by plants in wetland ecosystems. In this study, three species of Cyperus viz. Cyperus alternifolius, Cyperus prolifer and Cyperus textilis were used to carry out phytotoxicity tests to monitor xenobiotic substances.
3

Lead and cadmium uptake by corn (Zea mays L.) from two Quebec soils.

Culley, John Laurence Benjamin January 1976 (has links)
No description available.
4

An investigation of the level of selected trace metals in plant species within the vicinity of tantalum mining area in Gatumba, Ngororero District, Rwanda

Gakwerere, François 02 April 2013 (has links)
Due to mining activities, the natural vegetation cover in Gatumba area was removed and replaced either by crops or bare wasteland with reduced available arable land. The main aim of the study was to assess the impact of the mining activities on the plant mineral uptake and the dynamics of the vegetation. The vegetation in this area under investigation was diversified and heterogeneous. Trace element concentrations in soils were similar to those in plant parts but some elements were highly concentrated in soils than in plants. According to the bioaccumulation factors of the analyzed trace elements in plant parts, two categories of plants were identified, and these are excluders and accumulators. No toxic levels of the evaluated trace elements were found in the analyzed plant samples. As a recommendation for the adaptation of plants to Gatumba mining environment, the most useful plant species for the revegetation/restitution of the technosols should be Sesbania sesban, Crotalaria dewildemaniana and Tithonia diversifolia subject to further experiments on trace elements bioaccumulation and organic matter production / Environmental Sciences / M.A. Science (Environmental Sciences)
5

An investigation of the level of selected trace metals in plant species within the vicinity of tantalum mining area in Gatumba, Ngororero District, Rwanda

Gakwerere, François 02 April 2013 (has links)
Due to mining activities, the natural vegetation cover in Gatumba area was removed and replaced either by crops or bare wasteland with reduced available arable land. The main aim of the study was to assess the impact of the mining activities on the plant mineral uptake and the dynamics of the vegetation. The vegetation in this area under investigation was diversified and heterogeneous. Trace element concentrations in soils were similar to those in plant parts but some elements were highly concentrated in soils than in plants. According to the bioaccumulation factors of the analyzed trace elements in plant parts, two categories of plants were identified, and these are excluders and accumulators. No toxic levels of the evaluated trace elements were found in the analyzed plant samples. As a recommendation for the adaptation of plants to Gatumba mining environment, the most useful plant species for the revegetation/restitution of the technosols should be Sesbania sesban, Crotalaria dewildemaniana and Tithonia diversifolia subject to further experiments on trace elements bioaccumulation and organic matter production / Environmental Sciences / M.A. Science (Environmental Sciences)

Page generated in 0.1101 seconds