• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la réactivité de décharges électriques nanoseconde à la pression atmosphérique dans la vapeur d'eau / Experimental study of nanosecond atmospheric pressure plasma discharges in water vapor

Sainct, Florent 14 February 2014 (has links)
Les décharges plasma dans la vapeur d’eau sont d’un grand intérêt pour de nombreuses applications potentielles, telles que le traitement biomédical, la production d’hydrogène ou la combustion assistée par plasma. Cette thèse propose une caractérisation expérimentale détaillée de l’effet thermique et chimique des décharges non-thermique nanosecondes répétitives pulsées (NRP) à la pression atmosphérique dans la vapeur d’eau pure. Un réacteur a été conçu pour fonctionner avec la vapeur d’eau préchauffée à 400-500 K. Les conditions opératoires retenues sont un débit de 300 g/h à 500 K et une décharge avec une énergie moyenne de 20 à 100 W, en régime Spark. Différents diagnostics ont été développés afin de déterminer les produits de cette décharge en termes d’espèces intermédiaires, de densité électronique et des produits stables. La concentration des produits de réaction stables (H2 et O2) et leurs débits respectifs ont été mesurés par chromatographie en phase gazeuse. Une valeur maximale de 0,85 g-H2/kWh a été obtenue. La densité électronique a été mesurée par spectroscopie d’émission optique (OES) résolue en temps grâce à l’élargissement par effet Stark des raies (H, H et O). La densité électronique maximale mesurée est 2X1018 cm-3 pendant l’impulsion. La température du gaz a été mesurée lors de la décharge de 20 ns par OES ainsi que entre deux décharges (100 us) par fluorescence induite par laser du radical OH (OH-PLIF) à deux couleurs. L’élévation maximale de la température est de 950 K après l’impulsion, et la température décroît ensuite de façon exponentielle avec un temps de décroissance caractéristique de 5 us. La densité relative du radical OH a été mesurée par OH-PLIF, révélant la durée de vie relativement longue de OH avec un temps de décroissance d’environ 50 us. En utilisant un modèle cinétique 0-D, la densité absolue OH à la fin de l’impulsion a été estimée à 400 plus ou moins 200 ppm. Les résultats obtenus ont permis d’éclairer les mécanismes sous-jacents à la génération de décharges NRP en régime Spark dans la vapeur d’eau pure à basse température. / Plasma discharges in water vapor are of great interest for a variety of potential applications, such as biomedical treatment, hydrogen production, or plasma assisted combustion. This thesis proposes a detailed experimental characterization of the thermal and chemical effects of non thermal discharge, particularly Nanosecond Repetitively Pulsed (NRP) discharges at atmospheric pressure in pure water vapor. A reactor has been designed to operate with water vapor preheated at 400-500 K. We investigated the various discharge regimes and the operating conditions for each regime. The selected operating conditions are a flow rate of 300 g/h at 500 K. The discharge has an average energy from 20 to 100 W in the spark regime. Various diagnostics have been developed in order to infer the products of this discharge in terms of intermediate species, electrons, and stable products. The concentration of the reaction products (H2 and O2) and their respective flow rates were measured using gas chromatography. A maximal value of 0.85 g- H2/kWh was obtained. The electron number density has been measured using time-resolved optical emission spectroscopy (OES) via Stark-broadened lines (H, H and O). The maximum measured electron density is 2X1018 cm-3 during the pulse, and a slow recombination process was observed. The gas temperature was measured during the 20-ns discharge by OES as well as between two discharges (100 us) by two-color OH-Planar Laser Induced Fluorescence (OH-PLIF). The maximum temperature elevation is 950 K after the pulse ; the temperature then decays exponentially with a characteristic time of 5 us. Between two successive discharges, the relative density of the OH radical was measured by OH-PLIF. An interesting result is the relatively long-lived nature of OH, with a 1/e decay time of about 50 us. Using a 0D-chemical kinetics model, the absolute OH density at the end of the pulse was estimated to 400 more or less 200 ppm. These results provide useful information to better understand the mechanisms underlying the generation of NRP spark discharges in low temperature pure water vapor.

Page generated in 0.1268 seconds