Spelling suggestions: "subject:"cplasma poudre"" "subject:"cplasma poudres""
1 |
Tuning of the interaction potential in complex plasmas / Modulation du potentiel d’InteractionWörner, Lisa 07 December 2012 (has links)
A côté des solides, des liquides et des gaz, le plasma est le quatrième état de la matière. Il est généré en ionisant un gaz. Dans l’univers, 99% de la matière est à l’état de plasma. L’émergence de plusieurs types de plasmas artificiels est due aux multiples et différentes applications, très intéressantes les unes que les autres, des plasmas dans des secteurs aussi variés que l’industrie, l’énergie, le biomédical et la science. Très souvent, des particules solides peuvent se former dans les plasmas. Ceci a tout particulièrement été observé dans ceux utilisés dans l’industrie. La compréhension des mécanismes de leur nucléation et croissance est d’une importance capitale en vue de trouver des solutions pour inhiber leur formation ou d’éviter qu’elles ne se déposent sur les surfaces en cours de traitement. L’objectif du travail de recherche entrant dans le cadre de cette thèse est l’étude de la formation de particules dans un plasma généré par décharge électrique continue. Il a été observé que ce phénomène dépend du flux de gaz neutre injecté dans l’enceinte du réacteur. Nous avons mis en évidence que la fréquence de formation est liée à ce paramètre. Les observations enregistrées à l’aide d’un spectroscope sont complétées et corrélées aux photographies obtenues par microscopie électronique à balayage. L’injection de particules dans le plasma plutôt que de procéder à les faire croitre présente certains avantages. On peut contrôler leur taille y compris du cas de mélanges de particules. On tout particulièrement injecter des particules ayant des tailles beaucoup plus importantes que celles que l’on forme sur des gammes de durées raisonnables des plasmas utilisés. Plusieurs expériences réalisées avec des particules injectées ont mis en exergue le caractère pluridisciplinaire du milieu plasma. Afin de comprendre les interactions mutuelles entre particules il est crucial de déterminer la charge portée par les particules. Plusieurs expériences réalisées au cours de cette thèse et présentées ici ont porté sur la détermination de ce paramètre fondamental. Dans ce cadre une série d’expérience a été réalisée à bord de la Station Spatiale Internationale (ISS) dans le but de déterminer la charge résiduelle des particules dans la phase de post-décharge. Dans la dernière partie, seront présentées et discutées des expériences portant sur l’observation de la rotation de clusters de particules soumis à un confinement supplémentaire. On montre que les particules tendent à former des alignements verticaux dus au faible champ qui se forme en aval de chaque particule. Enfin, les connaissances acquises sur les possibilités de moduler le potentiel d’interaction par l’intermédiaire d’un champ électrique seront discutées. Les résultats sont comparés aux prédictions des simulations. / Plasmas are next to the solid, liquid and gaseous phase the fourth state of matter. It is established by ionizing a gas. About 99% of the visible matter in the universe is in the state of plasma. The industrial, medical and scientific benefits of plasmas led to a variety of artificially produced plasmas. In plasmas dust particles can grow. Especially in industrial plasmas particle formation in the plasma gas phase is very common. The fundamental understanding of the growth is of vital importance in order to suppress undesired particle formation or to deposit particles and films in a certain region. In terms of this thesis the particle growth in a direct current (DC) discharge by using acetylene will be discussed. It has been observed that the particle growth depends on the neutral gas flow fed into the plasma chamber. Depending on the applied flow different growth frequencies and transport phenomena are shown. The observations recorded by a spectrometer will then be complimented by pictures from the particles taken by a scanning electron microscope. Introducing artificial particles into a plasma rather than growing them there yields several advantages. The particle sizes can be controlled, including the possibility of particle mixtures. Furthermore, particles with bigger diameter can be introduced than what can be grown on reasonable time scales in a plasma. Several possible experiments with injected particles underline the interdisciplinary character of the plasma environment. To understand the inter particle interactions the particle charge is a crucial parameter. In this thesis several experiments determining the particle charge will be discussed. In this frame the experiments on board of the International Space Station have been performed to measure the residual charge in the particle afterglow. In the last section experiments on particle cluster rotation as observed in an additional confinement will be discussed. It will be shown that the particles tend to form vertical strings due to the wake field that forms downstream of each particle. Finally the insight gained on the possibilities of tuning of the interaction potential by electric fields will be discussed. The results are then compared to the predictions of earlier simulations.
|
2 |
Étude de la formation et du rôle des nanoparticules dans l'élaboration de couches minces d'oxyde d'étain par PECVDJubault, Marie 18 September 2009 (has links) (PDF)
Les couches minces d'oxyde d'étain sont largement utilisées dans différents domaines d'applications comme les électrodes transparentes, les détecteurs de gaz, ou encore les catalyseurs. Il a été montré que la nanostructure des films permettait d'améliorer sensiblement les propriétés optiques et électriques des couches minces de semiconducteurs. L'objectif principal de ce travail de thèse est de synthétiser des films minces de SnO2, en contrôlant leur nanostructure et leur composition. Lors de la croissance de couches minces dans notre système de dépôt chimique en phase vapeur assisté par plasma (PECVD), des poudres nanométriques, polymérisées en phase plasma, peuvent s'incorporer dans le film. Les propriétés électriques du plasma sont grandement affectées par la croissance de ces poudres, et il est ainsi possible de suivre leur évolution par des mesures de la tension d'autopolarisation (VDC) de l'électrode de tension. Dans un premier temps, nous avons établi l'influence des paramètres du procédé sur l'évolution de la VDC, et relié ses variations à la granulométrie du film observé par microscopie électronique à balayage. Nous avons ensuite modifié les temps d'allumage et d'extinction du plasma, en faisant fonctionner notre générateur en mode pulsé. Nous avons ainsi pu discuter différentes hypothèses sur les mécanismes de formations des poudres dans un plasma argon/oxygène/tétraméthylétain. Un lien entre les conditions de modulation du plasma et la présence de nanocristallites incorporées au film d'oxyde d'étain a pu être établi.
|
3 |
Formation de poudres carbonées dans un plasma de haute fréquence produit à très basse pression dans des mélanges acétylène-argonAl Makdessi, Georges 08 1900 (has links)
Dusty plasmas are plasmas that contain solid particles of nano- or micrometer size. They are widespread in the cosmic environment and act as precursors in the formation of planets and stars. Such plasmas are also used in laboratories for the synthesis of nanocomposites, which have wide technological and medical applications. While a large scientific effort has been invested in the study and control of such plasmas, the initial growth mechanism of powders (i.e. before they reach several tens of nanometers) remains poorly known.
This work contributes primarily to expand the fundamental knowledge in the field of dusty plasmas. Our goal is to understand the physical chemistry of high-frequency plasmas magnetically confined in chemically reactive gases. In addition, we aim by examining the kinetics of the precursors in the plasma to understand the mechanisms of nanoparticle formation in the volume and to control their characteristics in a magnetically confined low pressure Ar/C2H2 plasma. This contribution has a direct impact on science and plasma applications. Among the applications related directly to this research, we mention the synthesis of carbon-based nanocomposites for their integration in solar cells and biomaterials.
By examining the plasma characteristics (plasma temperature and density, cation and anion density) and correlating them to those of the dust particles, we found that the magnetic field changes the process of the formation of these particles in the discharge at very low pressure. Specifically, it stimulates the nucleation of carbon nanoparticles through several channels, i.e. through the anions and cations.
These nanoparticles include two different phases, an amorphous carbon layer and a porous core formed of grains aggregate. These grains are formed of graphite nanocrystals coated with an amorphous layer. Moreover, the radius of the dust particles increases with the magnetic field, which is related to the enhancement of their residence time in the plasma volume. / Les plasmas poudreux sont des plasmas qui contiennent des particules solides de taille nano- ou même micrométrique. Ils sont répandus dans l'environnement cosmique et jouent le rôle de précurseurs dans la formation des planètes et des étoiles. Ce type de plasma est également utilisé dans les laboratoires pour la synthèse des nanocomposites possédant de vastes applications dans le monde technologique et médical. Tandis qu’un grand effort scientifique a été investi dans l’étude et le contrôle de ce type de plasmas, les mécanismes initiaux de formation des poudres (i.e. avant qu’elles atteignent quelques dizaines de nanomètres) demeurent très peu connus. On sait toutefois que des réactions physico-chimiques sont à l’origine de précurseurs des poudres qui déclenchent la nucléation.
Ce travail contribue en premier lieu à accroître les connaissances fondamentales dans le domaine des plasmas poudreux en général. Il s’agit en particulier de comprendre la physico-chimie des plasmas de haute fréquence de très basse pression soumis à un confinement magnétique dans des gaz chimiquement réactifs. Plus spécifiquement, l’objectif de ce travail est d’examiner la cinétique des précurseurs produits dans le plasma afin de comprendre les mécanismes de formation de nanoparticules en volume et le contrôle de leurs caractéristiques dans des mélanges d’Ar/C2H2 de très basse pression confinés magnétiquement. Cet apport a des retombées directes en science et applications des plasmas. Parmi les applications directement visées par cette recherche, notons la synthèse de nanomatériaux composites à base de carbone pour leur intégration dans les cellules solaires et les biomatériaux.
En examinant les caractéristiques du plasma (température et densité du plasma, densité des cations et des anions) et en les corrélant à celles des particules de poudre, on constate que le champ magnétique modifie le processus de la formation des particules poudreuses dans la décharge à très basse pression. Plus précisément, il favorise la nucléation des nanoparticules de carbone à travers plusieurs voies impliquant les anions et les cations. Ces nanoparticules comprennent deux phases différentes, une couche de carbone amorphe et un noyau poreux formé d'un agrégat de grains eux-mêmes constitués de nanocristaux de graphite revêtus d'une couche amorphe. On constate que le rayon moyen des particules de poudre augmente avec le champ magnétique, ce qui est lié à l’amélioration de leur temps de résidence dans le volume du plasma.
|
Page generated in 0.0264 seconds