• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude d'une méthode d'amortissement des disruptions d'un plasma de tokamak

Reux, Cédric 04 November 2010 (has links) (PDF)
Les disruptions sont des pertes violentes et très rapides (environ 20 ms) du confinement des plasmas de tokamak qui peuvent conduire à des endommagements de la structure du tokamak. Elles génèrent des charges thermiques sur les composants face au plasma, des forces électromagnétiques dans les structures de la machine et produisent des électrons découplés relativistes pouvant perforer l'enceinte à vide. Pour des futurs réacteurs, il sera indispensable d'amortir ces effets. L'injection massive de gaz est une des méthodes proposées dans ce but. Son étude expérimentale et numérique est l'objet de la thèse. Des expériences menées sur les tokamaks Tore Supra et JET ont montré que l'injection de gaz légers comme l'hélium empêchaient la production d'électrons découplés, au contraire des gaz plus lourds. Les gaz légers sont en effet capables d'accroître suffisamment la densité du plasma pour empêcher la création de ces électrons. En revanche, les gaz lourds permettent de dissiper par rayonnement et de façon plus bénigne une partie de l'énergie thermique du plasma. Tous les gaz diminuent les forces électromagnétiques. Des mélanges de gaz ont également été testés avec succès pour profiter des avantages des deux types de gaz. La pénétration du gaz dans le plasma semble liée à des instabilités MHD augmentant le transport radial du gaz ionisé vers le centre, mais empêchant la propagation des neutres au-delà d'une surface critique. Des simulations d'injections massives ont été réalisées avec le code 3D MHD Jorek, en y ajoutant un modèle de fluide neutre. Les résultats montrent que la croissance des instabilités MHD est plus rapide lorsque de grandes quantités de gaz sont injectées et que les surfaces rationnelles sont successivement ergodisées lors de la pénétration du front de densité dans le plasma, conformément aux observations expérimentales.
2

Test particles dynamics in 3D non-linear magnetohydrodynamics simulations and application to runaway electron formation in tokamak disruptions / Dynamique de particules tests dans des simulations de magnétohydrodynamique non-linéaire 3D et application à la génération d'électrons découplés dans les disruptions des tokamaks

Sommariva, Cristian 18 December 2017 (has links)
La thèse étudie la dynamique des Electrons Découplés (DE) dans une disruption plasma déclenchée par injection massive de gaz dans le tokamak JET et simulée par le code JOREK. Cette investigation est permise par l’implémentation d’un module de suivi des particules tests relativistes dans JOREK. L’étude montre que les électrons peuvent ‘survivre’dans le chaos magnétique caractérisant la phase dite de ‘Disjonction Thermique’ (DT) de cette disruption (simulée) grâce à la reformation des surfaces magnétiques fermées. Deuxièmement, l’accélération des électrons causée par les champs électriques dus aux fluctuations magnétohydrodynamiques (MHD) pendant la DT est analysée. Cela montre que les électrons peuvent être accélérés par ces champs et devenir DE, après reconfinement, pendant la phase dite de ‘Disjonction de Courant’. Une étude préliminaire sur les dépendances entre le courant des DE et l’activité MHD dans les expériences de disruption du tokamak ASDEX Upgrade est également reportée. / In view of better understanding Runaway Electron (RE) generation processes during tokamak disruptions, this work investigates test electron dynamics during a JET disruption simulated with the JOREK code. For this purpose, a JOREK module computing relativistic test particle orbits in the simulated fields has been developed and tested. The study shows that a significant fraction of pre-disruption thermal electrons remain confined in spite of the magnetic chaos characterizing the Thermal Quench (TQ) phase. This finding, which is related to the prompt reformation of closed flux surfaces after the TQ, supports the possibility of the so-called “hot tail” RE generation mechanism. In addition, it is found that electrons may be significantly accelerated during the TQ due to the presence of strong local electric field (E) fluctuations related to magnetohydrodynamic (MHD) activity. This phenomenon, which has virtually been ignored so far, may play an important role in RE generation. In connection to this modelling work, an experimental study on ASDEX Upgrade disruptions has been performed, suggesting that strong MHD activity reduces RE production.
3

Analyse de modèles pour ITER ; Traitement des conditions aux limites de systèmes modélisant le plasma de bord dans un tokamak

Auphan, Thomas 18 March 2014 (has links) (PDF)
Cette thèse concerne l'étude des interactions entre le plasma et la paroi d'un réacteur à fusion nucléaire de type tokamak. L'objectif est de proposer des méthodes de résolution des systèmes d'équations issus de modèles de plasma de bord. Nous nous sommes intéressés au traitement de deux difficultés qui apparaissent lors de la résolution numérique de ces modèles. La première difficulté est liée à la forme complexe de la paroi du tokamak. Pour cela, il a été choisi d'utiliser des méthodes de pénalisation volumique. Des tests numériques de plusieurs méthodes de pénalisation ont été réalisés sur un problème hyperbolique non linéaire avec un domaine 1D. Une de ces méthodes a été étendue à un système hyperbolique quasilinéaire avec bord non caractéristique et conditions aux limites maximales strictement dissipatives sur un domaine multidimensionnel : il est alors démontré que cette méthode de pénalisation ne génère pas de couche limite. La deuxième difficulté provient de la forte anisotropie du plasma, entre la direction parallèle aux lignes de champ magnétique et la direction radiale. Pour le potentiel électrique, cela se traduit par une résistivité parallèle très faible. Afin d'éviter les difficultés liées au fait que le problème devient mal posé quand la résistivité parallèle tend vers 0, nous avons utilisé des méthodes de type asymptotic-preserving (AP). Pour les problèmes non linéaires modélisant le potentiel électrique avec un domaine 1D et 2D, nous avons fait l'analyse théorique ainsi que des tests numériques pour deux méthodes AP. Des tests numériques sur le cas 1D ont permis une étude préliminaire du couplage entre les méthodes de pénalisation volumique et AP.
4

Formation de poudres carbonées dans un plasma de haute fréquence produit à très basse pression dans des mélanges acétylène-argon

Al Makdessi, Georges 08 1900 (has links)
Dusty plasmas are plasmas that contain solid particles of nano- or micrometer size. They are widespread in the cosmic environment and act as precursors in the formation of planets and stars. Such plasmas are also used in laboratories for the synthesis of nanocomposites, which have wide technological and medical applications. While a large scientific effort has been invested in the study and control of such plasmas, the initial growth mechanism of powders (i.e. before they reach several tens of nanometers) remains poorly known. This work contributes primarily to expand the fundamental knowledge in the field of dusty plasmas. Our goal is to understand the physical chemistry of high-frequency plasmas magnetically confined in chemically reactive gases. In addition, we aim by examining the kinetics of the precursors in the plasma to understand the mechanisms of nanoparticle formation in the volume and to control their characteristics in a magnetically confined low pressure Ar/C2H2 plasma. This contribution has a direct impact on science and plasma applications. Among the applications related directly to this research, we mention the synthesis of carbon-based nanocomposites for their integration in solar cells and biomaterials. By examining the plasma characteristics (plasma temperature and density, cation and anion density) and correlating them to those of the dust particles, we found that the magnetic field changes the process of the formation of these particles in the discharge at very low pressure. Specifically, it stimulates the nucleation of carbon nanoparticles through several channels, i.e. through the anions and cations. These nanoparticles include two different phases, an amorphous carbon layer and a porous core formed of grains aggregate. These grains are formed of graphite nanocrystals coated with an amorphous layer. Moreover, the radius of the dust particles increases with the magnetic field, which is related to the enhancement of their residence time in the plasma volume. / Les plasmas poudreux sont des plasmas qui contiennent des particules solides de taille nano- ou même micrométrique. Ils sont répandus dans l'environnement cosmique et jouent le rôle de précurseurs dans la formation des planètes et des étoiles. Ce type de plasma est également utilisé dans les laboratoires pour la synthèse des nanocomposites possédant de vastes applications dans le monde technologique et médical. Tandis qu’un grand effort scientifique a été investi dans l’étude et le contrôle de ce type de plasmas, les mécanismes initiaux de formation des poudres (i.e. avant qu’elles atteignent quelques dizaines de nanomètres) demeurent très peu connus. On sait toutefois que des réactions physico-chimiques sont à l’origine de précurseurs des poudres qui déclenchent la nucléation. Ce travail contribue en premier lieu à accroître les connaissances fondamentales dans le domaine des plasmas poudreux en général. Il s’agit en particulier de comprendre la physico-chimie des plasmas de haute fréquence de très basse pression soumis à un confinement magnétique dans des gaz chimiquement réactifs. Plus spécifiquement, l’objectif de ce travail est d’examiner la cinétique des précurseurs produits dans le plasma afin de comprendre les mécanismes de formation de nanoparticules en volume et le contrôle de leurs caractéristiques dans des mélanges d’Ar/C2H2 de très basse pression confinés magnétiquement. Cet apport a des retombées directes en science et applications des plasmas. Parmi les applications directement visées par cette recherche, notons la synthèse de nanomatériaux composites à base de carbone pour leur intégration dans les cellules solaires et les biomatériaux. En examinant les caractéristiques du plasma (température et densité du plasma, densité des cations et des anions) et en les corrélant à celles des particules de poudre, on constate que le champ magnétique modifie le processus de la formation des particules poudreuses dans la décharge à très basse pression. Plus précisément, il favorise la nucléation des nanoparticules de carbone à travers plusieurs voies impliquant les anions et les cations. Ces nanoparticules comprennent deux phases différentes, une couche de carbone amorphe et un noyau poreux formé d'un agrégat de grains eux-mêmes constitués de nanocristaux de graphite revêtus d'une couche amorphe. On constate que le rayon moyen des particules de poudre augmente avec le champ magnétique, ce qui est lié à l’amélioration de leur temps de résidence dans le volume du plasma.
5

Caractérisation et modélisation des propriétés d’émission électronique sous champ magnétique pour des systèmes RF hautes puissances sujets à l’effet multipactor / Characterization and modelling of the secondary electron emission properties under magnetic field for high power RF systems subject to Multipactor effect

Fil, Nicolas 10 November 2017 (has links)
La fusion nucléaire contrôlée par confinement magnétique avec les réacteurs de type Tokamaks et les applications spatiales ont en commun d’utiliser des composants Haute-Fréquence (HF) sous vide à forte puissance. Ces composants peuvent être sujets à l’effet multipactor qui augmente la densité électronique dans le vide au sein des systèmes, ce qui est susceptible d’induire une dégradation des performances des équipements et de détériorer les composants du système. Ces recherches consistent à améliorer la compréhension et la prédiction de ces phénomènes. Dans un premier temps nous avons réalisé une étude de sensibilité de l’effet multipactor au rendement d’émission électronique totale (noté TEEY). Cette étude a permis de montrer que l’effet multipactor est sensible à des variations d’énergies autour de la première énergie critique et dans la gamme d’énergies entre la première énergie critique et l’énergie du maximum. De plus, les composants HF utilisés dans les réacteurs Tokamak et dans le domaine du spatial peuvent être soumis à un champ magnétique continu. Nous avons donc développé un nouveau dispositif expérimental afin d’étudier ce phénomène. Le fonctionnement du dispositif et la méthode de mesure ont été analysées et optimisées à l’aide de modélisations numériques avec le logiciel PIC SPIS. Une fois que l’utilisation du dispositif a été optimisée et que le protocole de mesures a été validé, nous avons étudié l’influence d’un champ magnétique uniforme et continu sur le TEEY du cuivre. Nous avons démontré que le rendement d’émission électronique totale du cuivre est influencé par la présence d’un champ magnétique et par conséquent également l’effet multipactor. / Space communication payload as well as magnetic confinement fusion devices, among other applications, are affected by multipactor effect. This undesirable phenomenon can appear inside high frequency (HF) components under vacuum and lead to increase the electron density in the vacuum within the system. Multipactor effect can thus disturb the wave signal and trigger local temperature increases or breakdowns. This PhD research aims to improve our understanding and the prediction of the multipactor effect. The multipactor phenomenon is a resonant process which can appear above a certain RF power threshold. To determine this power threshold, experimental tests or/and simulations are commonly used. We have made a study to evaluate the multipactor power threshold sensitivity to the TEEY. Two particular critical parameters have been found: first cross-over energy and the energies between the first cross-over and the maximum energies. In some situations, the HF components are submitted to DC magnetic fields which might affect the electron emission properties and hence the multipactor power threshold. Current multipactor simulation codes don’t take into account the effect of the magnetic field on the TEEY. A new experimental setup specially designed to investigate this effect was developed during this work. Our new experimental setup and the associated TEEY measurement technique were analysed and optimized thanks to measurements and SPIS simulations. We used the setup to study the influence of magnetic field perpendicular to the sample surface on the TEEY of copper. We have demonstrated that the magnetic field affects the copper TEEY, and hence multipactor power threshold.

Page generated in 0.4073 seconds