• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Computational Study of A Lithium Deuteride Fueled Electrothermal Plasma Mass Accelerator

Gebhart, Gerald Edward III 13 June 2013 (has links)
Future magnetic fusion reactors such as tokamaks will need innovative, fast, deep-fueling systems to inject frozen deuterium-tritium pellets at high speeds and high repetition rates into the hot plasma core. There have been several studies and concepts for pellet injectors generated, and different devices have been proposed. In addition to fueling, recent studies show that it may be possible to disrupt edge localized mode (ELM) formation by injecting pellets or gas into the fusion plasma. The system studied is capable of doing either at a variety of plasma and pellet velocities, volumes, and repetition rates that can be controlled through the formation conditions of the plasma. In magnetic or inertial fusion reactors, hydrogen, its isotopes, and lithium are used as fusion fueling materials. Lithium is considered a fusion fuel and not an impurity in fusion reactors as it can be used to produce fusion energy and breed fusion products. Lithium hydride and lithium deuteride may serve as good ablating sleeves for plasma formation in an ablation-dominated electrothermal plasma source to propel fusion pellets. Previous studies have shown that pellet exit velocities, greater 3 km/s, are possible using low-z propellant materials. In this work, a comprehensive study of solid lithium hydride and deuteride as a pellet propellant is conducted using the ETFLOW code, and relationships between propellants, source and barrel geometry, pellet volume and aspect ratio, and pellet velocity are determined for pellets ranging in volume from 1 to 100 mm3. / Master of Science
2

Test particles dynamics in 3D non-linear magnetohydrodynamics simulations and application to runaway electron formation in tokamak disruptions / Dynamique de particules tests dans des simulations de magnétohydrodynamique non-linéaire 3D et application à la génération d'électrons découplés dans les disruptions des tokamaks

Sommariva, Cristian 18 December 2017 (has links)
La thèse étudie la dynamique des Electrons Découplés (DE) dans une disruption plasma déclenchée par injection massive de gaz dans le tokamak JET et simulée par le code JOREK. Cette investigation est permise par l’implémentation d’un module de suivi des particules tests relativistes dans JOREK. L’étude montre que les électrons peuvent ‘survivre’dans le chaos magnétique caractérisant la phase dite de ‘Disjonction Thermique’ (DT) de cette disruption (simulée) grâce à la reformation des surfaces magnétiques fermées. Deuxièmement, l’accélération des électrons causée par les champs électriques dus aux fluctuations magnétohydrodynamiques (MHD) pendant la DT est analysée. Cela montre que les électrons peuvent être accélérés par ces champs et devenir DE, après reconfinement, pendant la phase dite de ‘Disjonction de Courant’. Une étude préliminaire sur les dépendances entre le courant des DE et l’activité MHD dans les expériences de disruption du tokamak ASDEX Upgrade est également reportée. / In view of better understanding Runaway Electron (RE) generation processes during tokamak disruptions, this work investigates test electron dynamics during a JET disruption simulated with the JOREK code. For this purpose, a JOREK module computing relativistic test particle orbits in the simulated fields has been developed and tested. The study shows that a significant fraction of pre-disruption thermal electrons remain confined in spite of the magnetic chaos characterizing the Thermal Quench (TQ) phase. This finding, which is related to the prompt reformation of closed flux surfaces after the TQ, supports the possibility of the so-called “hot tail” RE generation mechanism. In addition, it is found that electrons may be significantly accelerated during the TQ due to the presence of strong local electric field (E) fluctuations related to magnetohydrodynamic (MHD) activity. This phenomenon, which has virtually been ignored so far, may play an important role in RE generation. In connection to this modelling work, an experimental study on ASDEX Upgrade disruptions has been performed, suggesting that strong MHD activity reduces RE production.
3

Structural effects of plasma instabilities on the JET tokamak

Buzio, Marco January 1999 (has links)
No description available.

Page generated in 0.0873 seconds