• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting the Hall-Petch Effect in FCC Metals Using Non-Local Crystal Plasticity

Counts, William A. 30 November 2006 (has links)
It is well documented that the mechanical response of polycrystalline metals depends on the metal's microstructure, for example the dependence of yield strength on grain size (Hall-Petch effect). Local continuum approaches do not address the sensitivity of deformation to microstructural features, and are therefore unable to capture much of the experimentally observed behavior of polycrystal deformation. In this work, a crystal plasticity model is developed that predicts a dependence of yield strength on grain size without grain size explicitly entering into the constitutive equations. The grain size dependence in the model is the result of non-local effects of geometrically necessary dislocations (GNDs), i.e. GNDs harden both the material at a point and the surrounding material. The conventional FeFp kinematics for single crystals have been augmented based on a geometric argument that accounts for the grain orientations in a polycrystal. The augmented kinematics allows an initial GND state at grain boundaries and an evolving GND state due to sub-grain formation within the grain to be determined in a consistent manner. Numerically, these non-local affects are captured using a non-local integral approach rather than a conventional gradient approach. The non-local crystal plasticity model is used to simulate the tensile behavior in copper polycrystals with grain sizes ranging from 14 to 244 micron. The simulation results show a grain size dependence on the polycrystal's yield strength, which are qualitatively in good agreement with the experimental data. However, the Hall-Petch exponent predicted by the simulations is more like d-1 rather than d-0.5. The effects of different simulation parameters including grain shape and misorientation distribution did not greatly affect the Hall-Petch exponent. The simulation results indicate that the Hall-Petch exponent is sensitive to the grain boundary strength: the Hall-Petch exponent decreases as grain boundary strength decreases. The intragrain misorientations predicted by the non-local model were compared with experiments on polycrystalline nickel. Experimentally, the intragrain misorientations were tracked by electron back scatter diffraction (EBSD) at various strain levels from the same location. On average, the simulation results predicted enough misorientation throughout the sample. However, the model did not correctly predict the spatial details of the intragrain misorientation.
2

EFFECTS OF THE LOCAL MICROMECHANICS AND ELECTROCHEMISTRY ON THE GALVANIC CORROSION OF AA7050-7451

Andrea Nicolas (6862598) 15 August 2019 (has links)
<div>The service life of aircraft structure, primarily composed of aluminum alloys, is markedly lower when galvanic corrosion is present due to early crack initiation at localized pitting, with the likelihood of cracking being higher at pits spanning several microns. To understand the joint effect that the mechanical and chemical behavior of AA7050-T7451 have on the evolution of corrosion prior and until its transition to cracking, the microstructure, constituent particles, mechanical strains, and the corrosion morphology were experimentally characterized using high-resolution methods and the mechanical stresses are computationally modeled at the micrometer level using a FFT-based crystal plasticity framework. </div><div><br></div><div>The material was corroded under both mechanically loaded and unloaded conditions under different corrosion intervals to properly capture the evolution of corrosion before, during, and after particle fallout. For the events prior to cracking, statistical cross-correlations between the mechanical state of the material and the corrosion morphology were performed to understand the mechanisms driving corrosion at its various stages. For the cracking event and its subsequent growth, the joint analysis of strains and stresses obtained from 3D crystal plasticity models were used to calculate Fatigue Indicator Parameters (FIPs) that can quantitatively give an insight of the major mechanisms driving crack initiation and growth in pre-corroded materials. The development of micromechanical models that account for both the environmental degradation and the microstructure in the material allowed to accurately predict the location of crack initiation arising from pits, which has been a longstanding problem in the field of corrosion. It is concluded that both corrosion growth and its transition to cracking are multivariable events, where corrosion growth is jointly driven by the local chemistry and the micromechanics, and crack initiation is driven by the coupled interaction between the corrosion geometry and the micromechanics.</div><div><br></div>
3

Development of Plasticity and Ductile Fracture Models Involving Three Stress Invariants

Zhang, Tingting 02 May 2012 (has links)
No description available.
4

CRYSTAL PLASTICITY OF PENTAERYTHRITOL TETRANITRATE (PETN)

Jennifer Oai Lai (17677422) 24 April 2024 (has links)
<p dir="ltr">We investigate the crystal plasticity and shock response of single crystal and polycrystalline pentaerythritol tetranitrate (PETN) using mesoscale finite element simulations. The model includes the Mie-Grüneisen Equation of State and a single crystal plasticity model. Simulations with single crystals with different orientations are tested using our plasticity model under shock compression to explore shear stress and slip. Parameters regarding the Mie-Grüneisen Equation of State are also verified in various orientations from 0.50 to 1.75 km/s. A polycrystalline PETN sample with varying grain sizes and orientations are subjected to shock loading with impact velocities ranging from 0.25 to 0.75 km/s. We study how differences in shock orientation affect slip and stress in PETN at different shock strengths.</p>

Page generated in 0.1919 seconds