Spelling suggestions: "subject:"plateau deproblem"" "subject:"plateau 3dproblem""
1 |
The numerical approximation of minimal surfaces with free boundaries by finite elementsTchakoutio, Paul. January 2003 (has links) (PDF)
Freiburg (Breisgau), University, Diss., 2003.
|
2 |
On the Asymptotic Plateau Problem in Hyperbolic SpaceWang, Bin January 2022 (has links)
We are concerned with the so-called asymptotic Plateau problem in hyperbolic space. That is, to prove the existence of hypersurfaces in hyperbolic space whose principal curvatures satisfy a general curvature relation and has a precribed asymptotic boundary at infinity. In this thesis, by following the method of Bo Guan, Joel Spruck and their collaborators, we solve the problem with the aid of an additional assumption. In particular, our result applies to hypersurfaces whose principal curvatures lie in the k-th Garding cone and has constant (k,k-1) curvature quotient. / Thesis / Master of Science (MSc)
|
3 |
Variational Convergence and Discrete Minimal SurfacesSchumacher, Henrik 09 December 2014 (has links)
No description available.
|
4 |
Minimal sets, existence and regularity / Ensembles minimaux, existence et régularitéFang, Yangqin 21 September 2015 (has links)
Cette thèse s’intéresse principalement à l’existence et à la régularité desensembles minimaux. On commence par montrer, dans le chapitre 3, que le problème de Plateau étudié par Reifenberg admet au moins une solution. C’est-à-dire que, si l’onse donne un ensemble compact B⊂R^n et un sous-groupe L du groupe d’homologie de Čech H_(d-1) (B;G) de dimension (d-1) sur un groupe abelien G, on montre qu’il existe un ensemble compact E⊃B tel que L est contenu dans le noyau de l’homomorphisme H_(d-1) (B;G)→H_(d-1) (E;G) induit par l’application d’inclusion B→E, et pour lequel la mesure de Hausdorff H^d (E∖B) est minimale (sous ces contraintes). Ensuite, on montre au chapitre 4, que pour tout ensemble presque minimal glissant E de dimension 2, dans un domaine régulier Σ ressemblant localement à un demi espace, associé à la frontière glissante ∂Σ, et tel que E⊃∂Σ, il se trouve qu’à la frontière E est localement équivalent, par un homéomorphisme biHöldérien qui préserve la frontière, à un cône minimal glissant contenu dans un demi plan Ω, avec frontière glissante ∂Ω. De plus les seuls cônes minimaux possibles dans ce cas sont ∂Ω seul, ou son union avec un cône de type P_+ ou Y_+. / This thesis focuses on the existence and regularity of minimal sets. First we show, in Chapter 3, that there exists (at least) a minimizerfor Reifenberg Plateau problems. That is, Given a compact set B⊂R^n, and a subgroup L of the Čech homology group H_(d-1) (B;G) of dimension (d-1)over an abelian group G, we will show that there exists a compact set E⊃B such that L is contained in the kernel of the homomorphism H_(d-1) (B;G)→H_(d-1) (E;G) induced by the natural inclusion map B→E, and such that the Hausdorff measure H^d (E∖B) is minimal under these constraints. Next we will show, in Chapter 4, that if E is a sliding almost minimal set of dimension 2, in a smooth domain Σ that looks locally like a half space, and with sliding boundary , and if in addition E⊃∂Σ, then, near every point of the boundary ∂Σ, E is locally biHölder equivalent to a sliding minimal cone (in a half space Ω, and with sliding boundary ∂Ω). In addition the only possible sliding minimal cones in this case are ∂Ω or the union of ∂Ω with a cone of type P_+ or Y_+.
|
Page generated in 0.0503 seconds