• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Targeting Pleckstrin Homology Domains for the Inhibition of Cancer Growth and Metastasis

Moses, Sylvestor Andrea January 2013 (has links)
Pleckstrin homology (PH) domains are structurally conserved domains, which generally bind to phosphatidylinositol phosphate (PtdInsP) lipids. They are present in a variety of proteins, including those that are upregulated in cancer growth and metastasis, and represent a crucial component of intracellular signaling cascades and membrane translocation. Thus, they may be considered as attractive targets for cancer drug therapy. AKT (protein kinase B), a pleckstrin homology lipid binding domain and a serine/threonine kinase-containing protein, is a key component of the phophatidylinositol-3-kinase (PI3K)/AKT cell survival signaling pathway which is activated in a variety of cancers, including prostate, pancreatic, and skin cancers. In this study, I report the finding of a novel inhibitor of AKT; PH-427. I describe its effects on binding to the PH domain of AKT thus preventing its binding to PtdIns3-P at the plasma membrane and subsequent activation. In vivo testing of the drug led to reduction of tumor size and numbers in a mouse pancreatic cancer model. Additional testing of PH-427 on squamous cell carcinomas revealed that the drug is able to reduce tumor burden and multiplicity in vivo when topically applied. Thus, we demonstrate proof-of-principle in targeting PH domains as a viable cancer drug therapy option. The effects of PH-427 raised the intriguing possibility that targeting PH domains may have beneficial effects in other signaling pathways with PH domain-containing proteins. Guanine exchange factors (GEFs) contain a Dbl homology (DH) domain and a PH domain and have been shown to be involved in the process of metastasis. More specifically, RacGEFs activate Rac1 GTPase by facilitating the exchange of GDP to GTP. Over-expression of certain GEFs has been shown to contribute to increased malignancy in a variety of cancers. T-lymphoma invasion and metastasis-inducing protein-1 (Tiam1) is a highly conserved GEF and contains an N-terminal pleckstrin homology domain (nPH) and a DH/C-terminal PH domain (cPH). Tiam1 has been found to be over-expressed in several cancers, including breast, colon and prostate cancers. In this study, I describe the identification, development, experimental testing, and potential mechanism of action of novel small molecule inhibitors targeting the RacGEF Tiam1 to inhibit prostate cancer bone metastasis.
2

Computational studies of signalling at the cell membrane

Lumb, Craig Nicholas January 2012 (has links)
In order to associate with the cytoplasmic leaflet of the plasma membrane, many cytosolic signalling proteins possess a distinct lipid binding domain as part of their overall fold. Here, a multiscale simulation approach has been used to investigate three membrane-binding proteins involved in cellular processes such as growth and proliferation. The pleckstrin homology (PH) domain from the general receptor for phosphoinositides 1 (GRP1-PH) binds phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P₃) with high affinity and specificity. To investigate how this peripheral protein is able to locate its target lipid in the complex membrane environment, Brownian dynamics (BD) simulations were employed to explore association pathways for GRP1-PH binding to PI(3,4,5)P₃ embedded in membranes with different surface charge densities and distributions. The results indicated that non-PI(3,4,5)P₃ lipids can act as decoys to disrupt PI(3,4,5)P₃ binding, but that at approximately physiological anionic lipid concentrations steering towards PI(3,4,5)P₃ is actually enhanced. Atomistic molecular dynamics (MD) simulations revealed substantial membrane penetration of membrane-bound GRP1-PH, evident when non-equilibrium, steered MD simulations were used to forcibly dissociate the protein from the membrane surface. Atomistic and coarse grained (CG) MD simulations of the phosphatase and tensin homologue deleted on chromosome ten (PTEN) tumour suppressor, which also binds PI(3,4,5)P₃, detected numerous non-specific protein-lipid contacts and anionic lipid clustering around PTEN that can be modulated by selective in silico mutagenesis. These results suggested a dual recognition model of membrane binding, with non-specific membrane interactions complementing the protein-ligand interaction. Molecular docking and MD simulations were used to characterise the lipid binding properties of kindlin-1 PH. Simulations demonstrated that a dynamic salt bridge was responsible for controlling the accessibility of the binding site. Electrostatics calculations applied to a variety of PH domains suggested that their molecular dipole moments are typically aligned with their ligand binding sites, which has implications for steering and ligand electrostatic funnelling.

Page generated in 0.0565 seconds