• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Basaltic volcanism : deep mantle recycling, Plinian eruptions, and cooling-induced crystallization

Szramek, Lindsay Ann 04 March 2011 (has links)
Mafic magma is the most common magma erupted at the surface of the earth. It is generated from partial melting of the mantle, which has been subdivided into end-members based on unique geochemical signatures. One reason these end members, or heterogeneities, exist is subduction of lithospheric plates back into the mantle. The amount of elements, such as Cl and K, removed during subduction and recycled into the deep mantle, is poorly constrained. Additionally, the amount of volatiles, such as Cl, that are recycled into the deep mantle will strongly affect the behavior of the system. I have looked at Cl and K in HIMU source melts to see how it varies. Cl/Nb and K/Nb suggest that elevated Cl/K ratios are the result of depletion of K rather than increased Cl recycled into the deep mantle. After the mantle has partially melted and mafic melt has migrated to the surface, it usually erupts effusively or with low explosivity because of its low viscosity, but it is possible for larger eruptions to occur. These larger, Plinian eruptions, are not well understood in mafic systems. It is generally thought that basalt has a viscosity that is too low to allow for such an eruption to occur. Plinian eruptions require fragmentation to occur, which means the melt must undergo brittle failure. This may occur if the melt ascends rapidly enough to allow pressure to build in bubbles without the bubbles expanding. To test this, I have done decompression experiments to try to bracket the ascent rate for two Plinian eruptions. One eruption has a fast ascent, faster than those seen in more silicic melts, whereas the other eruption is unable to be reproduced in the lab, however it began with a increased viscosity in the partly crystallized magma. After fragmentation and eruption, it is generally thought that tephra do not continue to crystallize. We have found that crystallinity increases from rim to core in two basaltic pumice. Textural data along with a cooling model has allowed us to estimate growth rates in a natural system, which are similar to experimental data. / text
2

Tephra Transport, Sedimentation and Hazards

Volentik, Alain C. M 31 March 2009 (has links)
Tephra deposits are one of the possible outcomes of explosive volcanic eruptions and are the result of vertical settling of volcanic particles that have been expelled from the volcanic vent into the atmosphere, following magma fragmentation within the volcanic conduit. Tephra fallout represents the main volcanic hazard to populated areas and critical facilities. Therefore, it is crucial to better understand processes that lead to tephra transport, sedimentation and hazards. In this study, and based on detailed mapping and sampling of the tephra deposit of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador), I investigate tephra deposits through a variety of approaches, including empirical and analytical modeling of tephra thickness and grain size data to infer important eruption source parameters (e.g. column height, total mass ejected, total grain size distribution of the deposit). I also use a statistical approach (smoothed bootstrap with replacement method) to assess the uncertainty in the eruptive parameters. The 2450 BP Pululagua volcanic plume dynamics were also explored through detailed grain size analysis and 1D modeling of tephra accumulation. Finally, I investigate the influence of particle shape on tephra accumulation on the ground through a quantitative and comprehensive study of the shape of volcanic ash. As the global need for energy is expected to grow in the future, many future natural hazard studies will likely involve the assessment of volcanic hazards at critical facilities, including nuclear power plants. I address the potential hazards from tephra fallout, pyroclastic flows and lahars for the Bataan Nuclear Power Plant (Philippines) posed by three nearby volcanoes capable of impacting the site during an explosive eruption. I stress the need for good constraints (stratigraphic analysis and events dating) on past eruptive events to better quantify the probability of future events at potentially active volcanoes, the need for probabilistic approaches in such volcanic hazard assessments to address a broad range of potential eruption scenarios, and the importance of considering coupled volcanic processes (e.g. tephra fallout leading to lahars) in volcanic hazard assessments.

Page generated in 0.0772 seconds