• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LUTTE CONTRE L'EROSION DES TERRES NOIRES EN MONTAGNE MEDITERRANEENNE. CONNAISSANCE DU MATERIEL VEGETAL HERBACE ET QUANTIFICATION DE SON IMPACT SUR L'EROSION

CROSAZ, Yves 25 October 1995 (has links) (PDF)
Les différentes études menées sur la dynamique naturelle du couvert végétal, les propriétés germinatives des semences, le développement du système racinaire et la production grainière aboutissent à une meilleure connaissance d'une quinzaine d'espèces végétales herbacées autochtones. Ainsi, le comportement germinatif des semences de Graminées est contrôlé par une inhibition tégumentaire qui disparaît plus ou moins rapidement en fonction du temps et des conditions de conservation ; les semences des Papilionacées sont dites dures et ne peuvent germer qu'après la fissuration du tégument. En conditions contrôlées et sur le substrat naturel, les vitesses d'enracinements observées vont de 2.2 mm/j pour la Koelérie du Valais à 5.7 mm/j pour le Brome érigé ; elles augmentent lorsque la granulométrie du substrat est plus fine. En outre, les Poacées favorisent la production de matière racinaire alors que les Papilionacées favorisent la production de matière aérienne. Les simulations de pluie sur micro-parcelles et le suivi du fonctionnement érosif de 2 ravines élémentaires végétalisées et instrumentées montrent l'importance de la couverture végétale quant à la réduction des matériaux transportés. La faisabilité de la végétalisation des marnes noires de la Durance est démontrée.
2

Impact du couvert arboré et herbacé sur le cycle de l'azote : cas de la savane de Lamto / Impact of tree and grass cover on the nitrogen cycle : case of the Lamto savanna

Srikanthasamy, Tharaniya 21 September 2018 (has links)
Une savane est définie par la coexistence entre des arbres et des Poacées. Dans la savane de Lamto en Côte d’Ivoire, l’espèce dominante de Poacée est connue pour inhiber la nitrification et avant mon étude, l’impact des arbres sur la nitrification était très mal connu. L’étape de la nitrification est conduite par deux différentes communautés, les archées et les bactéries nitrifiantes ayant le gène amoA. Le but de cette étude est de comprendre l’impact de ces deux types de végétaux sur le cycle de l’azote, notamment sur les communautés nitrifiantes et également de comprendre l’impact de la saisonnalité et du passage du feu sur ces processus. Des échantillonnages ont été réalisés sous les Poacées et les arbres à Lamto durant les saisons humides et sèche et également avant et après le passage du feu. Cela a mis en évidence plusieurs effets : (i) les Poacées dominantes de la savane inhibent la nitrification, (ii) les arbres dominants stimulent la nitrification, (iii) les archées nitrifiantes son prédominantes dans cette savane et elles contribueraient majoritairement à la nitrification, (iv) la saisonnalité à un impact direct sur les abondances et l’activité des micro-organismes du sol (l’activité transcriptionelle des archées nitrifiantes diminuent en saison humide), (v) le feu a un effet indirect sur les communautés microbiennes du sol par son impact sur les caractéristiques physico-chimiques des sols, notamment il diminue l’activité des archées nitrifiantes. Enfin, la dénitrification est supérieure sous les arbres que sous les Poacées. Cette étude a permis de mieux comprendre les interactions entres les bactéries et archées nitrifiantes, la végétation et la saisonnalité. / A savanna is defined by the coexistence between trees and grasses. Savannas represent 12-13% of continental surfaces. In the Lamto savanna in Ivory Coast, the dominant grass species inhibits nitrification (the transformation of ammonium into nitrate) and the impact of trees on nitrification before this study was not known. Nitrification is conducted by two different communities. The archaea nitrifiers that have the amoA-AOA gene and bacteria nitrifiers that have the amoA-AOB gene. The aim of this study is to analyse the impacts of both plant types on nitrogen cycling, particularly on the nitrifier communities, and understand the impact of seasonality and fire on these processes. Sampling was conducted under grasses and trees in the Lamto savanna during the wet and dry seasons and also before and after the fire. This study has highlighted for the first time different effects including: (i) the dominant savanna grasses inhibit nitrification, (ii) dominant trees stimulate nitrification, (iii) the archaea nitrifiers are predominant in this savanna and they are mainly responsible for nitrification in this ecosystem, (iv) seasonality has a direct impact on the abundances and activities of soil microorganisms and the wet season reduced archaea nitrifier transcriptional activities, (v) fire has an indirect impact on soil microbial communities due to its impacts on soil physico-chemical characteristics: it decrees the abundance of archaea nitrifiers. In addition, denitrification is higher under trees than grasses. This study permitted to better understand the interactions between nitrifiers, vegetation and seasons.
3

Etude des mécanismes histologiques et physiologiques du transfert de la chlordécone (insecticide organochlore) dans les vegetaux / Study of physiological and histochemical mechanisms of chlordecone transfer, an organochlorinated insecticide, in plant

Létondor, Clarisse 14 February 2014 (has links)
La chlordécone (CLD) est un insecticide organochloré qui a été utilisé principalement aux Antilles pour lutter contre le charançon du bananier (Cosmopolites sordidus). Sa faible dégradabilité dans le sol et sa dispersion dans les bassins versants entraînent une contamination durable des sols agricoles et des écosystèmes environnants. Cela pose un problème d’exposition pour l’Homme par la consommation de végétaux contaminés et pour l’environnement par le transfert de la molécule dans les chaînes alimentaires (bioamplification). Pour l’Homme, les principaux végétaux à risque sont les légumes-racines, en contact direct avec la CLD dans le sol, mais aussi les autres légumes car des résidus de CLD sont retrouvés dans les parties aériennes, tiges ou feuilles. Ce travail de thèse a porté sur le transfert sol-plante de la CLD, d’une part dans les tubercules des légumes-racines pour appréhender le risque sanitaire et d’autre part dans les graminées pour le risque environnemental. La lipophilie de la CLD joue un rôle majeur dans son transfert dans les plantes. La CLD a une affinité particulière pour les tissus lipophiles, notamment le périderme subérifié des tubercules et les parois cellulaires incrustées de lignine des vaisseaux du xylème. En outre, le transfert est dépendant de l’architecture de la plante, de sa physiologie et de l’histologie de ses organes. Nous avons mis en évidence deux voies de contamination des plantes par la CLD : l’absorption racinaire et l’adsorption sur le périderme des tubercules. Ces phénomènes sont suivis de la translocation de la molécule vers les tissus internes du tubercule par diffusion et vers la partie aérienne de la plante par évapotranspiration via les faisceaux vasculaires du xylème. Dans le cas des tubercules, nous avons distingué la part de contamination apportée par l’absorption racinaire de celle due à l’adsorption péridermique. Chez le radis, il a été montré que le phénomène prépondérant était la diffusion trans-péridermique. Une analyse du risque de contamination de tubercules couramment consommés aux Antilles (patate douce, dachine, igname) a été réalisée en se basant notamment sur l’architecture de la plante et l’histologie des tissus mis en place lors de la tubérisation. Concernant les graminées, la capacité de transfert de la CLD dans la partie aérienne de la plante a été étudiée chez plusieurs graminées usuelles. Le potentiel de contamination de la plante dépend de ses caractéristiques physiologiques (métabolisme) et de son cycle de vie (pérennité). Ces caractéristiques pourraient permettre d’orienter le choix de certaines graminées pour la phytoremédiation de la CLD. / Chlordecone (CLD) is an organochlorine insecticide mainly used in French West Indies to struggle against banana weevil (Cosmopolites sordidus). Its low degradability into soils and its spreading in catchment basins cause a sustainable contamination of agricultural soils and surrounding ecosystems. This leads to a human exposure risk, by food consumption of contaminated vegetables, and to an environmental risk by transfer of CLD in food chains. Main hazardous vegetables for human health are root-vegetables that are directly in contact of soil but also other vegetables because CLD residues are found in aerial parts of plant, leaves and shoots. The environmental risk seems to be the biomagnification of contamination in trophic chains due partly by consumption of contaminated plants. This work focused on the CLD soil-plant transfer, on the one hand in tubers of edible-roots for knowing the health risk and on the other hand in grasses for environmental risk. The CLD lipophilicity plays a major role in its transfer to plants. CLD exhibits a certain affinity for lipophilic tissues particularly for the suberised periderm of tubers and the xylem cell walls that are thickened by lignin. In addition, transfer depends on plant architecture, physiology and organ histology. Two ways of CLD plant contamination were highlighted: roots absorption and adsorption onto tuber periderm. These mechanisms are followed by CLD translocation towards internal tissues of tuber by diffusion and to above-ground parts of the plant within the transpiration stream occurring in vascular xylem vessels. For tubers, we distinguished between the contamination brought by roots absorption and the one brought by peridermic adsorption. In radish, the trans-peridermic diffusion was showed as the major way of contamination. A risk analysis mainly based on plant morphology and tissue histology set up during tuberization process was realized. For grasses, CLD transfer ability to aerial part of plant was studied in several usual gramineae (yam, sweet popato, dasheen). Plant contamination potential is mainly determined by its physiological traits (metabolism) and its life cycle (perenniality). These features could drive the choice of some gramineae to perform CLD phytoremediation.

Page generated in 0.0334 seconds