• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LOW COST, HIGHLY TRANSPORTABLE, TELEMETRY TRACKING SYSTEM FEATURING THE AUGUSTINE/SULLIVAN DISTRIBUTION AND POLARIZATION, FREQUENCY AND SPACE DIVERSITY

Harwood, Peter, Wilson, Christopher, Sullivan, Arthur, Augustin, Eugene 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The tracking system is part of a telemetry ground station being developed for the UK Ministry of Defence. The design objective is a self-contained transportable system for field use in a vehicle or workshop environment, so that the system components are required to be man portable. Comprehensive facilities are required for the reception, display and analysis of telemetry data from a remote 1430-1450MHz airborne source at ranges of up to 205km. Since tracking over water is a prime requirement the system must accommodate severe multipath fading. A detailed analysis of the link budget indicates that there is a major conflict between cost, portability, antenna size and the receiver complexity required to achieve a satisfactory performance margin. A baseline system is analysed using a four foot antenna. Methods for improving the performance are then considered including polarisation, frequency and space diversity coupled with alternative antenna types and configurations. The optimum solution utilises two six foot diameter shaped beam single axis antennas of unique design in conjunction with a receiving system which economically combines the elements of polarisation, frequency and space diversity.
2

Investigation, design and implementation of MIMO antennas for mobile phones : simulation and measurement of MIMO antennas for mobile handsets and investigations of channel capacity of the radiating elements using spatial and polarisation diversity strategies

ʿUs̲mān, Muḥammad January 2009 (has links)
The objectives of this work were to investigate, design and implement Multiple-Input Multiple-Output (MIMO) antenna arrays for mobile phones. Several MIMO antennas were developed and tested over various wireless-communication frequency bands. The radiation performance and channel capacity of these antennas were computed and measured: the results are discussed in the context of the frequency bands of interest. A comprehensive study of MIMO antenna configurations such as 2 × 1, 3 × 1, 2 × 2 and 3 × 3, using polarisation diversity as proposed for future mobile handsets, is presented. The channel capacity is investigated and discussed, as applying to Rayleigh fading channels with different power spectrum distributions with respect to azimuth and zenith angles. The channel capacity of 2 × 2 and 3 × 3 MIMO systems using spatial polarisation diversity is presented for different antenna designs. The presented results show that the maximum channel capacity for an antenna contained within a small volume can be reached with careful selection of the orthogonal spatial fields. The results are also compared against planar array MIMO antenna systems, in which the antenna size considered was much larger. A 50% antenna size reduction method is explored by applying magnetic wall concept on the symmetry reference of the antenna structure. Using this method, a triple dual-band inverted-F antenna system is presented and considered for MIMO application. Means of achieving minimum coupling between the three antennas are investigated over the 2.45 GHz and 5.2 GHz bands. A new 2 2 MIMO dual-band balanced antenna handset, intended to minimise the coupling with the handset and human body was proposed, developed and tested. The antenna coupling with the handset and human hand is reported in terms the radiation performance and the available channel capacity. In addition, a dual-polarisation dipole antenna is proposed, intended for use as one of three collocated orthogonal antennas in a polarisation-diversity MIMO communication system. The antenna actually consists of two overlaid electric and magnetic dipoles, such that their radiation patterns are nominally identical but they are cross-polarised and hence only interact minimally.
3

Investigation, Design and Implementation of MIMO Antennas for Mobile Phones. Simulation and Measurement of MIMO Antennas for Mobile Handsets and Investigations of Channel Capacity of the Radiating Elements Using Spatial and Polarisation Diversity Strategies.

Usman, Muhammad January 2009 (has links)
The objectives of this work were to investigate, design and implement Multiple-Input Multiple-Output (MIMO) antenna arrays for mobile phones. Several MIMO antennas were developed and tested over various wireless-communication frequency bands. The radiation performance and channel capacity of these antennas were computed and measured: the results are discussed in the context of the frequency bands of interest. A comprehensive study of MIMO antenna configurations such as 2 × 1, 3 × 1, 2 × 2 and 3 × 3, using polarisation diversity as proposed for future mobile handsets, is presented. The channel capacity is investigated and discussed, as applying to Rayleigh fading channels with different power spectrum distributions with respect to azimuth and zenith angles. The channel capacity of 2 × 2 and 3 × 3 MIMO systems using spatial polarisation diversity is presented for different antenna designs. The presented results show that the maximum channel capacity for an antenna contained within a small volume can be reached with careful selection of the orthogonal spatial fields. The results are also compared against planar array MIMO antenna systems, in which the antenna size considered was much larger. A 50% antenna size reduction method is explored by applying magnetic wall concept on the symmetry reference of the antenna structure. Using this method, a triple dual-band inverted-F antenna system is presented and considered for MIMO application. Means of achieving minimum coupling between the three antennas are investigated over the 2.45 GHz and 5.2 GHz bands. A new 2 2 MIMO dual-band balanced antenna handset, intended to minimise the coupling with the handset and human body was proposed, developed and tested. The antenna coupling with the handset and human hand is reported in terms the radiation performance and the available channel capacity. In addition, a dual-polarisation dipole antenna is proposed, intended for use as one of three collocated orthogonal antennas in a polarisation-diversity MIMO communication system. The antenna actually consists of two overlaid electric and magnetic dipoles, such that their radiation patterns are nominally identical but they are cross-polarised and hence only interact minimally.

Page generated in 0.0984 seconds