• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 14
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Split-field and internally filtered imaging polorimeter [i.e. polarimeter] development and testing

Heisey, Peter H. January 1996 (has links) (PDF)
Thesis (M.S. in Applied Physics) Naval Postgraduate School, June 1996. / Thesis advisor(s): Alfred W. Cooper. "June 1996." Includes bibliographical references (p. 239-142). Also available online.
12

The dielectric polarization of alcohols ...

Stoops, William Nelson, January 1929 (has links)
Thesis (Ph. D.)--Princeton University, 1929.
13

Inter-ion repulsion in the modeling of ionic atmospheres of polyelectrolytes

Wesenberg, Gary E. January 1983 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1983. / Typescript. Description based on print version record. Includes bibliographical references (leaves 151-154).
14

Dual-polarization cloud lidar design and characterization

Seldomridge, Nathan Lewis. January 2005 (has links) (PDF)
Thesis (M.S.)--Montana State University--Bozeman, 2005. / Typescript. Chairperson, Graduate Committee: Joseph A. Shaw. Includes bibliographical references (leaves 97-102).
15

Polarization of Helium-3 nuclei

Axen, David Arnold January 1965 (has links)
An atomic beam type of apparatus designed to produce a polarized He³ beam with an intensity of approximately one microampere and 90% polarization is described. He³ is a monatomic gas consisting of atoms with zero electronic magnetic moment and nuclear spin of ½. As no initial molecular dissociation is required, an intense, supersonic neutral beam can be produced with a miniature Laval nozzle cooled to liquid He⁴ temperatures. The velocity distribution of the particles in the Laval beam and the trajectories of these particles in a radially symmetric hexapole magnet have been computed. Sufficient separation of the two beams, consisting of particles in the two possible nuclear spin states, is achieved with a magnet in which the diameter of the gap between the pole pieces increases from 3mms at the entrance to 6mm in 15 cms and is then constant for 35cms. After ionization the nuclear polarization of the singly ionized particles depends upon the magnetic field strength at the position of the ion. Theoretical calculations show that field strengths of 6000 gauss at both the ionizer and target (in reaction studies) are sufficient to give 90% nuclear polarization. For an input gas temperature and pressure of 2.2°K and 15 mm.Hg. the Laval nozzle (throat diameter, 0.2 mm) has been designed to produce a supersonic beam of Mach number 4 with an intensity of 6.5x10¹⁵ particles/sec at the magnet entrance. Assuming 40% transmission through the magnet (one half of the beam being removed by the polarization process) and an ionization efficiency of 0.25%, the resulting ion beam intensity is 6.5x10¹² ions per second or approximately one microampere. The low temperature atomic beam source has been tested at liquid nitrogen temperature with a He⁴ beam. The measured beam intensity of 9x10¹³ particles/cm²/sec at the magnet exit, 76 cms from the nozzle, agrees favourably with the calculated intensity of 1.2x10¹⁴ atoms/ cm² sec under these operating conditions. The measured field gradient of 70,000 gauss/cm. near the pole tips of the hexapole splitting magnet is more than required for separating the atoms in the two nuclear spin states. A pulsed nuclear magnetic resonance method for measuring the nuclear polarization of the neutral He^ beam prior to ionization is described. The angular distribution and polarization of the protons produced by the D(He³,p)He⁴ reaction with an incident, polarized He³ beam of 150 Kev bombarding energy has been calculated, This angular distribution is isotropic. In the plane of the reaction, the proton polarization, which may be measured by a second scattering experiment, is -2/3 the incident He³ polarization. The angular distribution and polarization of the protons from this reaction has been calculated for the case of polarized and unpolarized He³ beams incident on a polarized deuteron target. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
16

Molecular polarizations of some phosphonitrilic compounds

Arsenault, Maureen A. January 1973 (has links)
A study of the dielectric properties of some phosphonitrilic fluorides, chlorides and chloride-fluorides in cyclohexane solutions was carried out and evidence was found to support the hypothesis that these compounds all have a non-negligible atom polarization caused by low frequency vibrations of the molecules. The distortion polarization of one of the geminally substituted isomers of the compound N₄P₄F₄Cl₄ was measured and this datum was used as support for assigning the 1,1,3,3-isomer structure to the compound. / Science, Faculty of / Chemistry, Department of / Graduate
17

Temperature and polarization anisotropies in cosmic microwave background radiation. / 宇宙微波背景輻射中之溫度與偏振各向不同性 / Temperature and polarization anisotropies in cosmic microwave background radiation. / Yu zhou wei bo bei jing fu she zhong zhi wen du yu pian zhen ge xiang bu tong xing

January 2003 (has links)
Chan Chi Wang = 宇宙微波背景輻射中之溫度與偏振各向不同性 / 陳志宏. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 94-98). / Text in English; abstracts in English and Chinese. / Chan Chi Wang = Yu zhou wei bo bei jing fu she zhong zhi wen du yu pian zhen ge xiang bu tong xing / Chen Zhihong. / Chapter 1 --- Overviewing modern cosmology --- p.1 / Chapter 1.1 --- Discoveries in Cosmology --- p.1 / Chapter 1.2 --- The Cosmological Model --- p.2 / Chapter 1.2.1 --- Cosmic Expansion --- p.3 / Chapter 1.2.2 --- The Metric and Friedmann Cosmology --- p.4 / Chapter 1.2.3 --- Thermodynamics of Matter and Radiation --- p.7 / Chapter 1.2.4 --- Timeline of the universe --- p.11 / Chapter 1.3 --- Formation of CMB and Its Anisotropics --- p.17 / Chapter 1.3.1 --- CMB --- p.17 / Chapter 1.3.2 --- CMB anisotropics --- p.18 / Chapter 1.4 --- Motivation and Thesis Outline --- p.21 / Chapter 2 --- The Recombination process --- p.23 / Chapter 2.1 --- The Saha approximation --- p.23 / Chapter 2.2 --- The Peebles recombination --- p.25 / Chapter 2.3 --- The RECFAST calculation --- p.28 / Chapter 3 --- The Boltzmann equations --- p.32 / Chapter 3.1 --- Boltzmann Equation for Photons --- p.33 / Chapter 3.1.1 --- Collision Term --- p.36 / Chapter 3.2 --- Boltzmann Equations for Matter --- p.37 / Chapter 3.2.1 --- Cold Dark Matter (CDM) --- p.37 / Chapter 3.2.2 --- Baryons --- p.38 / Chapter 3.3 --- Summary --- p.40 / Chapter 4 --- Formalism of CMB Anisotropies Calculation --- p.42 / Chapter 4.1 --- CMB Temperature Spectrum --- p.42 / Chapter 4.1.1 --- The Tight-coupling Solution --- p.43 / Chapter 4.1.2 --- Silk Damping --- p.45 / Chapter 4.1.3 --- The Free-Streaming Solution for fully decoupled cosmic fluid --- p.45 / Chapter 4.2 --- CMB Polarization Spectrum --- p.47 / Chapter 4.2.1 --- The E-mode and B-mode extractions --- p.48 / Chapter 4.3 --- The CMBFAST code --- p.50 / Chapter 4.4 --- Dependences on ionization history --- p.51 / Chapter 4.4.1 --- Recombination history --- p.53 / Chapter 4.4.2 --- Reionization history --- p.57 / Chapter 5 --- Softening of Equation of State during Recombination --- p.59 / Chapter 5.1 --- Recombination Revisited --- p.60 / Chapter 5.2 --- EOS softening by Recombination --- p.62 / Chapter 5.3 --- Numerical Results --- p.64 / Chapter 5.4 --- Summary and Discussions --- p.72 / Chapter 6 --- Time Varying Fundamental Constants --- p.74 / Chapter 6.1 --- Background --- p.74 / Chapter 6.1.1 --- Validity of time-varying fundamental constants --- p.76 / Chapter 6.1.2 --- The problem of units --- p.77 / Chapter 6.2 --- Theory --- p.78 / Chapter 6.3 --- Results --- p.79 / Chapter 6.3.1 --- Changing the electric charge --- p.80 / Chapter 6.3.2 --- Changing the electron mass --- p.82 / Chapter 6.3.3 --- Changing the cosmological constant --- p.85 / Chapter 6.3.4 --- Changing the speed of light --- p.87 / Chapter 6.4 --- Some concluding notes --- p.90 / Chapter 7 --- Conclusion --- p.92 / Bibliography --- p.94
18

Measurements of electrical double layer interactions in a nonpolar liquid /

Briscoe, Wuge H. Unknown Date (has links)
Thesis (PhD)--University of South Australia, 2001.
19

Electric moment and molecular structure.

Dornte, Ralph William, January 1931 (has links)
Thesis (Ph. D.)--Princeton University, 1931.
20

Studies in dielectric polarization I. Some organic solids. II. The polymethylene bromides.

Kamerling, Samuel Edward, January 1933 (has links)
Thesis (Ph. D.)--Princeton University, 1932.

Page generated in 0.3376 seconds