• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilização de resíduos de poliuretano expandido na moldagem por injeção de compósito de matriz de polietileno de alta densidade / Use of expanded polyurethane scrap to injection mold a composite into a high-density polyethylene matrix

Teixeira, André Luiz 03 April 2017 (has links)
Submitted by Milena Rubi (milenarubi@ufscar.br) on 2017-08-16T14:17:38Z No. of bitstreams: 1 TEIXEIRA_Andre_2017.pdf: 23449389 bytes, checksum: c2eafb920ec024ab4ae56b9b0007cff3 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-16T14:17:46Z (GMT) No. of bitstreams: 1 TEIXEIRA_Andre_2017.pdf: 23449389 bytes, checksum: c2eafb920ec024ab4ae56b9b0007cff3 (MD5) / Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-16T14:17:53Z (GMT) No. of bitstreams: 1 TEIXEIRA_Andre_2017.pdf: 23449389 bytes, checksum: c2eafb920ec024ab4ae56b9b0007cff3 (MD5) / Made available in DSpace on 2017-08-16T14:17:59Z (GMT). No. of bitstreams: 1 TEIXEIRA_Andre_2017.pdf: 23449389 bytes, checksum: c2eafb920ec024ab4ae56b9b0007cff3 (MD5) Previous issue date: 2017-04-03 / Não recebi financiamento / For a few years now polymeric materials have been ever present around the whole globe. Polyurethane (PU) for example is the sixth most produced polymer globally, generating with that a considerable amount of scrap due to industrialization processes, usage or end of its life cycle. About this, the present dissertation proposes to reprocess industrially discarded PU through mechanical recycling and injection molding to validate reusing this waste, reducing the amount sent to landfill. In order to do that PU scrap was physically mixed with high density polyethylene (HDPE), a commodity polymer, in pellets. PU was obtained from industrial waste of an earplug production process and HPE was bought in local market. PU scrap was obtained as a polymeric blanket that was later milled and micronized. Three different mixtures were manually prepared and placed into an industrial scale injection molding machine which resulted in the production of test specimens of 2%, 5% and 7% in mass of micronized PU into a HDPE matrix. Test specimens were submitted to flexural, tension and impact testing and the results were compared to the properties of 100% virgin specimens and with literature data. The samples indicated that adding PU decreased impact resistance but kept the performance on flexural and tension strengths, even increasing maximum deformation. Regarding thermal properties, the studied material presented the same melt and crystallization temperatures results for Differential Scanning Calorimetry (DSC) as well as loss and storage modulus for Dynamic Mechanical Thermal Analysis (DMTA). Thermogravimetric analysis (TGA) showed a decreased to the mass loss peak temperature when PU percentage increased. Nonetheless, considering all mechanical and thermal properties analyzed, present study shows that reusing the PU scrap is a viable option, given the appropriate process conditions. / Há alguns anos, os materiais poliméricos estão cada vez mais presentes nas indústrias, comércios, residências, enfim, no cotidiano de países do mundo inteiro. O poliuretano (PU), por exemplo, é o sexto tipo mais comum de polímero sintetizado mundialmente, gerando também uma quantidade considerável de resíduo, após o processamento industrial, uso ou fim de vida útil. Neste contexto, este trabalho aborda o reprocessamento, através da reciclagem mecânica e injeção, de poliuretano (PU) descartado industrialmente com a intenção de validar o reaproveitamento desse resíduo, diminuindo seu envio para aterros. Para isto, foram realizadas misturas físicas de resíduos de PU com o polietileno de alta densidade (PEAD), um polímero commodity, em forma de grânulos (pellets). O PU foi obtido de descartes primários do processo de fabricação de protetores auditivos e o PEAD foi comprado regularmente no mercado nacional. O PU de descarte estava no formato de uma manta polimérica que foi submetida à moagem e micronização. Posteriormente, as misturas foram realizadas manualmente e colocadas em injetora de porte industrial, o que permitiu a obtenção de corpos de prova nas proporções de 2%, 5% e 7% em massa de PU moído em relação ao polietileno de alta densidade (PEAD). Os corpos de prova injetados foram, então, submetidos aos ensaios de flexão, de tração e de impacto. Os resultados obtidos foram comparados aos das propriedades de corpos de prova 100% virgem (sem presença do PU) e com a literatura. As amostras indicaram que a adição do PU ocasionou decréscimo na propriedade de resistência ao impacto, mas manteve as propriedades testadas em flexão e tração, apresentando inclusive aumento na deformação máxima quando o PU foi adicionado. Quanto às propriedades térmicas, os materiais obtidos mantiveram os valores das temperaturas de fusão e de cristalização analisadas por DSC (Differential Scanning Calorimetry), bem como os valores de módulos de armazenamento e de perda analisados por DMTA (Dynamic Mechanical Thermal Analysis). De acordo com as análises realizadas por Termogravimetria (TG), foi observado decréscimo da temperatura de pico de perda de massa, quanto maior a presença de poliuretano. No entanto, considerando todas as propriedades mecânicas e térmicas analisadas, o trabalho indicou que é viável, diante de certas condições de processo, o reaproveitamento desse tipo de resíduo de PU.
2

Modelagem e simulação para correlação entre as caracteristicas do polietileno (PE) com as propriedades finais dos artefatos produzidos na industria / Modeling and simulation for correlations of polyethylene (PE) characteristics and final properties for individual products

Costa, Maria Carolina Burgos 27 April 2007 (has links)
Orientadores: Rubens Maciel Filho, Marcelo Embiruçu de Souza / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-09T00:35:59Z (GMT). No. of bitstreams: 1 Costa_MariaCarolinaBurgos_M.pdf: 1508476 bytes, checksum: 27959c176c0c329eb77aa2eff37a6b84 (MD5) Previous issue date: 2007 / Resumo: Um grande desafio relacionado com a pesquisa de polímeros tem sido o desenvolvimento de relações capazes de predizer as suas propriedades de uso final a partir das condições operacionais ¿ ou durante o processo de polimerização ou nas fases do processo de transformação. Estas relações podem ser utilizadas para otimizar as condições operacionais dos sistemas de transformação e produzir artigos com propriedades finais especificadas. O primeiro passo para isto é o conhecimento das relações entre propriedades intrínsecas e propriedades finais. O segundo passo é correlacionar as condições operacionais com as propriedades intrínsecas das resinas. Sendo assim, o principal objetivo do presente trabalho é desenvolver modelos empíricos para predição de propriedades finais de resinas de polietileno (PE) em função de suas propriedades intrínsecas, além de correlaciona r qualitativamente essas propriedades. Devido à grande variedade de resinas de polietileno existentes no mercado, as mesmas foram divididas em grupos, de acordo com a aplicação a que se destinam. Uma pesquisa foi realizada com a finalidade de se avaliar as propriedades mais importantes para cada aplicação final. Em seguida, foram encontradas equações compreendendo, para cada grupo de resinas, as seguintes classes de propriedades: propriedades mecânicas, térmicas, ópticas, propriedades de superfície de contato, reológicas e morfológicas. As propriedades intrínsecas selecionadas para caracterizar as resinas foram, índice de fluidez (MI), propriedade reológica que está inversamente relacionada com a viscosidade e com o peso molecular da resina; ¿stress exponent¿ (SE) / razão de expansão (SR), que é uma medida do caráter não-Newtoniano do polímero fundido, a qual pode ser usada para avaliar a processabilidade da resina; e densidade, que está diretamente relacionada com o grau de cristalinidade das resinas. Entre as propriedades intrínsecas existentes, as propriedades selecionadas exercem, em geral, uma influência significativa nas propriedades dos polímeros, além de serem facilmente mensuráveis na indústria. Além de uma extensa revisão bibliográfica, uma análise estatística prévia das correlações entre as variáveis foi realizada e, em seguida, foram escolhidas as variáveis de entrada de cada modelo. Para dois dos seis grupos de resinas estudados, a propriedade de SE / SR não foi usada como variável de entrada dos modelos, pois esta propriedade não é mensurável ou significativa para grande parte das resinas desses grupos. É importante destacar que os aditivos podem exercer influência considerável nas propriedades de uso final dos polímeros, ou seja, a influência dos aditivos torna ainda mais complexo o estudo para a predição das propriedades finais a partir das condições operacionais dos sistemas de polimerização. No entanto, não foi possível um controle da quantidade e qualidade dos aditivos envolvidos na produção das resinas e, dessa forma, um estudo envolvendo a influência dos aditivos nas propriedades de desempenho do polímero está além do escopo deste trabalho. Para o desenvolvimento deste trabalho, uma considerável quantidade de experimentos foi realizada, envolvendo 27 propriedades e 46 tipos de resinas, totalizando aproximadamente 870 resultados experimentais (Apêndice I), sendo que cada valor experimental apresentado representa uma média dos resultados obtidos para 5 amostras de cada tipo de resina. Em geral, os modelos desenvolvidos são capazes de reproduzir e predizer dados experimentais com precisão / Abstract: A great challenge related to polymers research has been the development of relations enabling prediction of polymer final properties according to the initial operational conditions - either during the polymerization process or the transformation process phases. These relations can be utilized to optimize the operational conditions of transformation systems and to produce devices with specified end-use properties. The first step for this is the information about the relationship s between end-use and intrinsic properties, while the second step is to correlate operation conditions with intrinsic properties of the resins. So, the main objective of the present work is to built-up empirical models to predict end -use properties of polyethylene (PE) resins as functions of its intrinsic properties and still correlate qualitatively these properties. Due to several types of polyethylene resins that are present in the market, the resins studied were separated in groups in accord to the final application of each ones. The research was carried out to evaluate the most important properties for each final application. Then, equations were found for each resins group, including the following classes of properties: mechanical, thermical, optical, contact surface, rheological and morphological properties. Intrinsic properties selected to characterize the resins were fluidity index (FI), which is opposite related to viscosity and molecular weight of the resin; stress exponent (SE) / expansion ratio (SR), which is a measure of the non-Newtonian character of the polymer melt and may be used to evaluate the processability of the polymer resin; and density, which is directly related with resins degree of crystallinity. Among the existing intrinsic properties, that ones which were selected exert, generally, a significant influence on the polymers properties, as well as being easily measurable in the industrial environment. Beyond an extensive literature revision, a previous statistic analysis of the correlations between variables was carried out, and then the input variables were chosen for each model. For two of six resins groups studied, the SE / SR properties were not used as a model input because these properties is not measured or meaningful for the greater part of the resins from those groups. It is important emphasize that the additives can exert considerable influence about end-use properties of polymers, thus, the additives influence makes even more complex the learning about a polymer final properties forecast from the operational conditions of the polymerization systems. However, a control of the additives amount and quality was not possible and a research including comprehensively the additives influence on polymers performance properties remaining beyond the scope of this work. In the curse of this research, a large number of experiments were carried out, embracing twenty seven properties and forty six resins, totalizing approximately eight hundred and seventy experimental results (Appendix I), and each experimental value presented represents a mean of the obtained results for five samples of each kind of resin. In general, models developed are able to reproduce and predict experimental data within experimental accuracy / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química

Page generated in 0.1115 seconds