Spelling suggestions: "subject:"polinomas"" "subject:"isulinomas""
1 |
Polinominio skirstinio hipotezių tikrinimas / Testing the hypotheses of polynomial distributionVaitiškytė, Asta 03 September 2010 (has links)
Tikrinamos statistinės hipotezės. Darbas susideda iš dviejų dalių: pirmoje dalyje tikrinamos dvi paprastos hipotezės, taikomas statistinis kriterijus, kuris turi tenkinti tokias sąlygas: 1 – pirmos rūšies klaidos tikimybė yra aprėžta, o 2 - antros rūšies klaidos tikimybę mes minimizuojame. Darbe gauta asimptotinė formulė šios antros rūšies klaidos tikimybės elgesio, kai duomenų skaičius n artėja į begalybę. Antroje dalyje tikrinamos trys paprastos hipotezės ir ištirta kaip elgiasi minimali klaidos tikimybė iš visų galimų, kitaip sakant optimalaus minimaksiško kriterijaus klaidos tikimybė, kai duomenų skaičius n neapibrėžtai didėja. Pirmoje dalyje nagrinėjama klaidos tikimybė asimtotiškai mažėja proporcingai Kulbako atstumui, o antroje dalyje atitinkama klaidos tikimybė atitinkamai mažėja proporcingai Čensovo atstumui. Taip pat savo darbo teorinėje dalyje aprašiau šių atstumų savybes. Pabaigoje, kaip pavyzdį paėmus polinominį skirstinį parodėme, kaip yra surandamos šių dviejų rezultatų asimptotinės formulės ir kaip atrodo atitinkamų šių hipotezių tikrinimo asimptotinis elgesys. / Statistical Hypothesis Testing. The work consists of two parts: in the first part two simple hypotheses were tested and a statistical criterion which should meet the following specifications was applied: 1 – the probability of type I error was defined and 2 - the probability of type II error was minimized. The asymptote formula of behaviour of the probability of type II error was obtained in the work when the n number of the data was approaching infinity. In the second part of the work three simple hypotheses were tested. It has been explored how the minimum error probability of all available errors, i.e., the error probability of the optimal minimax criterion, performed when the n number of the data was indefinitely increasing. The error probability analysed in the first part of the work was asymptotically decreasing in proportion to the Kulbak distance while the corresponding error probability analysed in the second part of the work was respectively decreasing in proportion to the Censov distance. Moreover, the properties of the distances mentioned above were described in the theoretical part of the work. The work concludes with choosing a polynomial distribution as an example which has demonstrated how the two asymptote formulas of the two results were obtained and how the asymptotic behaviour of testing of respective hypotheses looked like.
|
2 |
KINTAMO DIFUZIJOS KOEFICIENTO PARABOLINIŲ LYGČIŲ SPRENDIMAS SKAITINIAIS METODAIS / The solution of variable diffusion coefficient of the parabolic equations by numerical methodsStonkutė, Alina 03 September 2010 (has links)
Magistro darbe sprendėme diferencialinę difuzijos lygtį naujais metodais. Išanalizavę standartinius kintamo difuzijos koeficiento parabolinių lygčių sprendimo metodus, mes šiame darbe pasiūlėme spręsti šias lygtis naudojant vadinamąsias „tilto“ funkcijas. Išbandėme dviejų rūšių „tilto“ funkcijas: hiperbolinio tangento ir trigonometrinio. Diferencialinės lygties sprendinio ieškojome per „tilto“ funkcijų ir polinomų sandaugų sumą: trigonometrinei „tilto“ funkcijai ir hiperbolinei tangento „tilto“ funkcijai. Gavome kompiuterinius sprendinius ir nustatėme tų sprendinių paklaidas. Palyginę trigonometrinio bei hiperbolinio tangento „tilto“ funkcijos paklaidų standartinius nuokrypius gavome, kad tikslesnis yra hiperbolinio tangento „tilto“ funkcijos metodas. / Master thesis solved differential equation of diffusion of new techniques methods. Having analyzed the standard variable diffusion coefficient parabolic equation solution methods suggested in this work we solve these equations using the so-called "bridge" function. Tried two types of "bridge" functions: tangent hyperbolic and trigonometric. Differential equation, the solution we were looking for a "bridge" function and the amount of products of powers of polynomials: trigonometry "bridge" function and hyperbolic tangent of a "bridge" function. We have received computer-based solutions and the solutions found at the margins. A comparison of hyperbolic tangent trigonometric "bridge" function of the error standard deviations have received, the more accurate the hyperbolic tangent of a "bridge" function approach.
|
Page generated in 0.0383 seconds