• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 8
  • 1
  • 1
  • Tagged with
  • 152
  • 152
  • 152
  • 88
  • 64
  • 57
  • 46
  • 32
  • 32
  • 23
  • 22
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

An assessment of indoor and outdoor air quality in a university environment : a case of University of Limpopo, South Africa

Mundackal, Antony Jino 23 June 2021 (has links)
Air pollution of late has been the focus of many studies due to the detrimental health risks that it poses to individuals. University environments have several academic departments with peculiar activities that could be affecting the indoor and outdoor air quality (AQ) of these environments. University settings differ from other environments because of the variety of activities and different lines of work that go on inside buildings housing academic departments and their surroundings, which are likely to have an impact on indoor air quality (IAQ) and outdoor air quality (OAQ) in this environment. Only a few AQ studies have been done in university sites and surrounds worldwide and in these studies, IAQ was given primary importance; whereas, the outdoor environment was and is often neglected. A study comparing both IAQ and OAQ is critical to further understand the relationship between IAQ and OAQ within a university campus. The University of Limpopo (UL) in the Mankweng township of South Africa has been undergoing some refurbishments with numerous construction activities going on in addition to the academic activities of UL. These activities may be affecting the AQ in this unique environment. The main aim of this study was to determine differences between indoor and outdoor AQ in a university environment and to understand how AQ in this unique environment varies with seasons and building function. The study was carried out in three buildings housing three different academic departments in UL namely: Department of Physiology and Environmental Health (PEH), Department of Biochemistry, Microbiology, and Biotechnology (BMBT) and the Department of Biodiversity (BIOD). Twenty indoor and 20 outdoor measuring sites were identified per departmental building from where real-time measurements of 11 AQ parameters (linear air velocity (LAV), dry-bulb temperature (Tdb), relative humidity (RH), carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulphide (H2S), non-methane hydrocarbons (NMHCs) and volatile organic compounds (VOCs)) were taken over three consecutive days per season. Thus, a total of 60 indoor and 60 outdoor measurements were taken for each parameter in each of the three buildings of interest per season, leading to 360 measurements per season and 1440 measurement per parameter over the one-year period of study across the study area. A hot-wire anemometer was used to measure LAV, whereas the Q-Trak indoor AQ monitor was used in the measurement of Tdb, RH, CO and CO2. Aeroqual AQ monitors were employed in the measurement of O3, SO2, NO2, H2S, NMHCs and VOCs. The Wilcoxon signed ranks test was used to determine differences between indoor and outdoor environments. Significant differences were found between the indoor and outdoor environments for LAV (all three buildings), Tdb (PEH and BMBT), RH (BIOD), O3 (all three buildings), NO2 (all three buildings), CO (all three buildings), CO2 (all three buildings), NMHCs (BMBT and BIOD), and VOCs (all three buildings) (p < 0.05). Linear air velocity, O3, SO2, CO, CO2, and H2S values/concentrations across the indoor/outdoor environments were within the ASHRAE/DEA/WHO guidelines/standards, whereas Tdb, RH and NO2 values/concentrations were not. Air quality in the study area varied with building, with the best AQ across both the indoor and outdoor environments being within the BIOD building, whilst the worst AQ across both environments was encountered in the PEH building. Seasonal differences between buildings were also identified between indoor and outdoor environments among the PEH, BMBT and BIOD buildings (p < 0.008). Across the indoor environment, the winter season was found to be the season with the best AQ, since all the pollutants were found at minimum concentrations. Factors affecting AQ in the study area included thermal comfort, occupant densities, building function, laboratory emissions, renovation activities, generators, vehicular emissions, among others. The best AQ across the outdoor environment occurred during the autumn season, since all the air pollutants were present at minimal concentrations during this time. The best predictors of LAV, Tdb, CO, CO2, NO2, and NMHCs were seasons (R2 = 1.000, p < 0.01). For the parameters RH, H2S, and VOCs, the best predictor was building type (R2 = 1.000, p < 0.01). The indoor and outdoor environment were the best predictors for SO2 (R2 = 0.999, p < 0.01). Ozone had no single predictor that was found to significantly influence its concentration in this study. In relation to an air pollution index (API), generally all pollutant indices fell within the fair, good to very good range when using mean and maxima concentrations, whereas, corresponding NO2 concentrations throughout the study fell within the poor to very poor range (105.660–250.000). University management should take into consideration ventilation in laboratories, occupant densities and location of standby generators and car parks in the management of AQ on the university campus. All heating, ventilation and air conditioning (HVAC) systems need to be upgraded and work in tandem with natural ventilation when having high occupant densities within buildings. Future studies in this sector could incorporate larger sample sizes, be designed as a longitudinal study, and make use of questionnaires and sample more AQ parameters to get a detailed understanding of a university site and its surrounds. / Environmental Sciences / Ph. D. (Environmental Science)
142

An assessment of water quality and occurrence of antibiotic-resistant bacteria in Naauwpoortspruit River, Mpumalanga province, South Africa

Mudau, Khuthadzo Lunsford 03 1900 (has links)
Decreasing surface water quality in South Africa has become an issue of concern as the population grows, industrial and agricultural activities expand, and environmental pollution increases. Wastewater treatment plants and other anthropogenic activities are liable for releasing raw and inadequately treated effluents into the surface water. Extensive pollution accompanied by the use of disinfectants, pesticides, and other chemical pollutants has been attributed to increased antimicrobial resistance in bacteria such as Escherichia coli in surface water, increasing environmental antibiotic resistance spread. The research aimed to determine water quality and prevalence of antibiotic-resistant bacteria in Naauwpoortspruit River, eMalahleni, Mpumalanga Province. Five sampling sites were selected along the Naauwpoortspruit River and monitoring was done for seven consecutive months. Samples were collected and analysed for physicochemical, microbiological parameters, and susceptibility profile of antibiotic-resistant bacteria using standard methods. Pearson correlation analysis was used to assess the path and strength of the relationship between physicochemical and microbiological parameters in the study area. Results of physicochemical and microbial parameters showed variation throughout the selected study sites. The results revealed a pH range of 4.45 – 7.9 and electrical conductivity levels range of 58.63 - 113.3 mS/m for the different sampling sites during the study period with lower levels detected during the winter period and higher levels in the summer period. Also, water samples showed a high total dissolved solids levels range of 381.1 – 736.45 mg/L and biochemical oxygen demand range of 67.1 – 168 mg/L for the different sampling sites during the study period. The Naauwpoortspruit River had higher levels of ammonia of 33.4 mg/L at Point A during the winter period as compared to 15 mg/L in the summer period. Heavy metals results showed that mercury range of 0.01 – 0.065 mg/L and copper range of 0.001 – 0.0035 mg/L were not compliant with aquatic ecosystem guidelines at all selected sites throughout the study period. The foremost finding of this study was that E. coli were present in all the selected sites at concentrations (>100 cfu/100ml). Elevated concentrations of 5.4 x 103 and 4.2 x 103 cfu/100ml for the total and faecal indicator bacteria were detected from sites downstream to 2.2 x103 and 2.35 x103 cfu/100ml for sites upstream river, in the rainy months. During the dry season, total coliforms, and faecal coliforms concentration of 0.4 x103 to 0.65 x 103 cfu/100ml were detected downstream and 0.25 x 103 and 0.5 x 103 cfu/100ml from upstream, respectively. The physicochemical and microbiological parameters measured at selected sites exceeded acceptable limits and proved unsuitable for applications such as full and intermediate recreational activities, and aquatic ecosystems. The variation in physicochemical parameters results was influenced by both natural processes and human activities such as salinity and Acid Mine Drainage (AMD) within the Naauwpoortspruit River. Using the Kirby-Bauer disc diffusion method, E. coli and faecal coliforms were tested for resistance to antibiotics; ampicillin (10 μg/ml), kanamycin (30 μg), streptomycin (30 μg), chloramphenicol (30 μg), erythromycin (15 μg), ox tetracycline (30 μg), erythromycin (15 μg/ml) and norfloxacin (10 μg). More than 60% of faecal coliform were resistant to at least four of the tested antibiotics and between 60 - 80% of the E. coli isolates were resistant to β lactam. The highest microbial antibiotic resistance (MAR) index value was observed at Site D (0.38 for E. coli) which showed multi-antibiotic resistance. Site D is characterized by wastewater treatment, power generation industries, and agriculture activities. The highest level of MAR observed at Site D indicates the need to control extensive pollution and constantly monitor the changing trends in antimicrobial resistance patterns of these waterborne pathogens. Statistical analysis showed that the development of microbiological parameters loads has a strong correlation with physicochemical parameters due to the association of sampling sites in the river environment. This study shows that the aquatic ecosystem needs constant monitoring to establish their conditions, impacts of pollution activities within the catchment, and input information into sustainable management of the water resources. / Environmental Sciences / M. Sc. (Environmental Science)
143

Evaluation of community water quality monitoring and management practices, and conceptualization of a participatory model : a case study of Luvuvhu Catchment, South Africa

Nare, Lerato 11 February 2016 (has links)
Department of Hydrology and Water Resources / PhDH
144

The quality of water sample from Maungani community domestic water pots, Limpopo Province, South Africa

Okosi, Emmanuel Okori 05 1900 (has links)
MPH / Department of Public Health / See the attached abstract below
145

Mancozeb in natural water sources in the Vhembe District and the possible endocrine disrupting activity/potential there-of

Seshoka, M. F. 21 September 2018 (has links)
MSc (Zoology) / Department of Zoology / Many chemicals released into the environment are believed to disrupt normal endocrine functions in humans and animals. These endocrine disrupting chemicals (EDCs) affect reproductive health and development. A major group of EDCs that could be responsible for reproductive effects are those that mimic natural oestrogens, known as xeno-oestrogens. A number of in vivo and in vitro screening strategies are being developed to identify and classify xeno-oestrogens, in order to determine whether they pose a health risk to humans and animals. It is also important to be able to apply the assays to environmental samples for monitoring purposes. Oestrogens and androgens mediate their activity via intracellular receptors – directly in muscular tissue as well as indirectly via stimulation of growth hormones from the pituitary glands and other growth factors from liver plus several other organs. Mancozeb is a metal ethylenebisdithiocarbamate (EBDC) fungicide used to protect many fruits and vegetables and field crops against pathogenic fungal. It causes a variety of defects on the female reproductive system in experimental animals and is therefore considered a suspected EDC. This fungicide can also induce toxic effects in cells of the immune system and other non-immune cells leading to genotoxicity and apoptosis. The mechanisms of EDCs involve divergent pathways including (but not limited to) oestrogenic, antiandrogenic, thyroid receptors; that are highly conserved in wildlife and humans, and which can be modelled in laboratory in vitro and in vivo models. The endocrine disrupting properties of Mancozeb are not known as of yet and therefore the T47D-KBluc reporter gene assay, GH3.TRE-Luc and MDA-kb2 reporter gene assay were used determine the possible endocrine disrupting activity/potential there-of. No activity was detected in any of the assays and no mancozeb was detected in any of the dams either. Oestrogenic activity was detected in Albasini Dam, Nandoni Dam and Xikundu weir but all values were below 0.7 ng/ℓ trigger value for oestrogenic activity in drinking water. / NRF
146

Estimation of the emissions of gases from a two landfill sites using the LandGEM and Afvalzorg models: Case study of the Weltervenden (Polokwane) and Thohoyandou landfills

Njoku, Prince Obinna 21 September 2018 (has links)
MENVSC / Department of Ecology and Resource Management / Over the years it has been observed that the solid waste sector has been an increasingly major contributor to the amount of Greenhouse gases (GHGs) in the atmosphere. To some extent a great chunk of these GHGs in the atmosphere is from Landfill gas (LFG). This study employs two theoretical models (LandGEM and Afvalzorg models) to estimate the amount of LFG emitted from Weltervenden and Thohoyandou landfill sites located in Limpopo province of South Africa. Furthermore, the study investigated the appropriate technique of the LFG utilisation as a source of electricity and the number of households using electricity. LFGcost model was used to estimate the cost and benefits related to the implementation of a LFG utilisation technology. Also, the possible health and environmental impacts of the landfill emissions on the people living closer to the landfill site were determined. The LandGEM model’s simulation concludes that CH4 and CO2 peaked in the year 2020 with values of 3.323 × 103 Mg/year and 9.118 × 103 Mg/year, respectively, for the Thohoyandou landfill. Results from the Afvalzorg model indicate that the CH4 peaked in the year 2020 with value of 3.501 × 103 Mg/year. Meanwhile the total emission of CH4 from 2005-2040 by the LandGEM and Afvalzorg models are 66200 Mg/year and 69768 Mg/year, respectively. However, for the Weltervenden landfill, the total LFG peaked in the year 2023 while the CH4 peak at 4061 Mg/year and 3128 Mg/year for LandGEM and Afvalzorg models, respectively. Furthermore, results from the cost analysis and benefits for the implementation of a LFG utilisation technology in both landfills show that the implementation of such a utilisation technology will be economically feasible considering the sale of t CO2 equivalent in the carbon market. However, without considering the sales of t CO2 equivalent, not all the LFG engines are economically feasible for both landfills. This study also shows that the residents living closer to the Thohoyandou landfill are at a higher risk of environmental pollution and could suffer negative impacts from the landfill than residents living far from the landfill site. However, the Weltervenden landfill did not have lots of communities living closer to the landfill and therefore it was not included in this study. / NRF
147

Evaluation of environmental compliance with solid waste management practices from mining activities : a case study of Marula Platinum Mine

Manyekwane, Dikeledi, Lethabo January 2019 (has links)
Thesis (M. Sc.(Geography)) -- University of Limpopo, 2019 / Global production of Platinum Group Metals (PGMs) is dominated by South Africa due to its large economic resources base in the Bushveld Igneous Complex (BIC). PGMs are used in a wide range of high technology applications worldwide including medicinal, industrial and commercial purposes, and its contribution to the Gross Domestic Product (GDP) and creating jobs for many. In an area where mining activities dominate, there are likely to be problems that need effective environmental management approaches, which can be facilitated through legislations. Marula Platinum Mine (MPM) is located in Limpopo province BIC which has the second largest number of mining productivity in South Africa. Environmental legislations have been put in place by the South African government in order to avoid or minimise the footprints caused by PGM mining. This study looked at environmental compliance with solid waste management practices by Marula Platinum Mine (MPM) as guided by Mineral and Petroleum and Resource Development Act (MPRDA) and National Environmental Management Act (NEMA) as well as the environmental impacts of MPM in the surrounding communities. Both primary (questionnaires, field observations and key informant interviews) and secondary (NEMA, MPRDA, journals, reports, pamphlets, internet and books) data was used to address the objectives of the study. Descriptive method and Statistical Package for Social Sciences (SPSS) version 25 were used for the analysis of data. The key research results revealed that MPM was compliant with 65% and 21% partially compliant with solid waste management practices. Only 14% of information on solid waste management practices could not be accessed because MPM is still operational. MPM had also had negative footprints on the surrounding villages such as dust generation and cracks on walls and floors on houses of community members, strikes and increase in the usage of substance abuse. Recommendations of the study are that MPM should address challenges that hinder environmental compliance so as to be 100% compliant with MPRDA and NEMA regulations. MPM should also provide other mitigation measures for blasting of explosives to reduce dust generation and problems of cracks on houses of surrounding village members.
148

Genomic characterisation and antimicrobial resistance profiles of Listeria monocytogenes isolated from pig farms

Masemola, Puseletso Maselepe 07 1900 (has links)
Listeria monocytogenes is a zoonotic foodborne pathogen, transmissible from the natural agricultural environment to animals and humans. In recent years, the pig production industry has experienced a series of monetary losses as a result of the L. monocytogenes outbreak which threatened the economy of South Africa. This outbreak also had a detrimental effect on the health system of the country. In South Africa however, there is limited information regarding the genomic diversity of L. monocytogenes. Therefore, an overview of the genomic diversity of L. monocytogenes strains circulating at different levels of the pork production chain needs to be determined so as to be able to identify routes of contamination of the pathogen and thus improve meat safety. This study was aimed to determine the antimicrobial resistance patterns and population structure of L. monocytogenes isolated from pig farms in South Africa. Based on wholegenome sequence analysis, 77 isolates of L. monocytogenes were differentiated into four molecular serogroups with IIa (45.5%) being the most prevalent followed by IIc (26.0%), IVb (22.1%) and IIb (6.5%). Overall, 11 clonal complexes (CCs) were identified in this study, with the predominance being observed from; CC204 (23.4%), CC1 (19.5%) and CC2 (16.9%). Genetic elements associated with biocide, antimicrobial and heavy metal resistance were noted in 24.7 %, 48% and 11.7% of the isolates, respectively. Listeria pathogenicity island 1 and 3 that harbored clusters of virulence genes were present in 38.8% of the isolates. Five different plasmids were found in 68.9% of the isolates. This study has given baseline data on the genomic diversity of L. monocytogenes strains that are associated with biocides, heavy metal and antibiotics resistance genes. The data again demonstrated the genotypes of L. monocytogenes that are prone to contaminate the farm environment and possibly cause diseases in animals and humans. / Life and Consumer Sciences / M. Sc. (Life Sciences)
149

Water quality assessment and evaluation of human health risk of drinking water at Thulamela Municipality, Limpopo Province

Luvhimbi, Ndivhudzannyi 29 June 2020 (has links)
MPH / Department of Public Health / Water quality of drinking water has been linked to good health outcomes across the world. The aim of this study was to assess physico-chemical, bacteriological, community practices regarding collection and storage of water and evaluation of human health risk characteristics of drinking water supplied by the government to Lufule village in Thulamela municipality, Limpopo Province, South Africa A cross-sectional study was conducted using questionnaires and interviews to determine drinking water handling practices and levels of contamination between the source and point-of-use at household. Assessment of water quality was carried out on 114 samples from selected sampling points using scientifically approved protocols. Total coliform was determined in 62.5% and 87.5% of the samples during the dry and wet seasons respectively. Similarly, E. coli was determined in 10.4 % and 13.2% in the dry and wet seasons, respectively. Trace metals levels in the drinking water samples were analysed and were within permissible range of both SANS and WHO. The calculated non-carcinogenic effects using hazard quotient toxicity potential, cumulative hazard index and chronic daily intake of drinking water through ingestion pathways were less than one unity, which showed that consumption of the water could pose little or no significant health risk. The results of this research suggest that lead has the potential of cancer risk to the residents through the cumulative ingestion in the drinking water samples of the studied area. Therefore, precaution needs to be taken to avoid potential risk of people in Lufule area especially, children. / NRF
150

Development of Intervention Strategies for Management of Medical Waste in Vhembe District, South Africa

Olaniyi, Foluke Comfort 07 1900 (has links)
PhD (Public Health) / Department of Public Health / Medical waste is a special type of hazardous waste generated from healthcare facilities. Mismanagement of this waste has a negative impact on healthcare workers, patients and their relatives, medical waste handlers and the community. South Africa, like many other developing countries, is resource-constrained in the management of medical waste and poor practices have been reported across the country, especially in the urban health facilities that have received more attention from researchers. This study was conducted to explore the practices and challenges of medical waste management in Vhembe District, a largely rural district in Limpopo province and develop intervention strategies for better management of the waste in the District. A convergent parallel approach of mixed method design was adopted to achieve the objectives of this study. The target population included the main stakeholders of medical waste management in the district: the Department of Health, healthcare facilities and the waste management company responsible for the treatment and disposal of medical waste in Limpopo Province. The study population from the Department of Health included representatives from the medical waste management section while the waste management company was represented by the manager of the company in Limpopo Province. The samples for the healthcare facilities were drawn from fifteen randomly selected healthcare facilities in the district and included the administrative heads, medical waste generators and medical waste handlers. The study was conducted in three phases. Phase 1 was a qualitative study during which the administrative heads of the selected healthcare facilities, personnel directly involved in medical waste management at the healthcare facilities as well as the representatives from the Department of Health and waste management company were engaged in in-depth interviews. This phase also involved voice recording, observations, field documentation and taking of relevant pictures. Thematic content analysis was used to analyze the data obtained. During phase 2 (quantitative study), a semi-structured questionnaire was employed for data collection from medical waste generators and handlers at the healthcare facilities. A total of 229 questionnaires were retrieved from the participants and were analyzed with the Statistical Package for Social Sciences version 25.0. Descriptive statistical analyses were performed; Chi-square and Cramer’s V tests were used to determine the associations between dependent and independent variables, as well as the strength of association where significant relationships exist. Statistical significant level was set at p<0.05 and the results are presented in tables and graphs. The results from both phases were interpreted and discussed simultaneously. Respondents and participants were assured of anonymity of their identities and confidentiality of the information they provided. They were given adequate information about the study and only those who volunteered participated in the study after appending their signatures on the informed consent form. In phase 3, the Medical Research Council Framework was used to develop intervention strategies for improved medical waste management in Vhembe District based on the Strength, Weakness, Opportunity and Threat (SWOT) and Political, Economic, Social, Technological, Environmental and Legal (PESTEL) analysis techniques. The study revealed inefficient practices of medical waste management in all the healthcare facilities. Rate of medical waste generation was 338.15kg/day, 19.2kg/day and 15.5kg/day of HCRW from the hospitals, community health centers and clinics respectively. Segregation practices were poor, and only 28.4% of respondents rated their healthcare institutions as being excellent with medical waste segregation. The type of occupation was found to be significantly associated with exposure to training (p=0.000) and the level of knowledge about medical waste management (p=0.000). Also, the use of personal protective equipment was found to be significantly associated with training (p=0.011). Transportation and temporary storage were not done according to the recommendation in the guidelines and incineration was the main means of treatment of the waste. The final product of waste treatment is being disposed into an hazardous waste landfill. The challenges encountered in the process of managing medical waste include lack of adequate funding and budget for medical waste management, ineffective and irregular training of healthcare workers, non-compliance to medical waste management guidelines, insufficient bins, substandard central storage rooms, insufficient personal protective equipment and unavailability of Hepatitis B vaccine. The strength, weakness, opportunities and threats of medical waste management in Vhembe District were analyzed and specific intervention strategies were developed to improve on the strength, minimize the weakness, take advantage of the opportunity and combat the threats. The developed strategies were validated. This study provides the evidences of poor management of medical waste in Vhembe District, and shows the need for urgent intervention measures to be put in place. We therefore recommend that the intervention strategies proposed here be evaluated and implemented to mitigate the untoward effects of poor medical waste management among healthcare workers and the community as a whole. / NRF

Page generated in 0.1273 seconds