Spelling suggestions: "subject:"pollution load"" "subject:"collution load""
1 |
A study of stormwater runoff from Alexandra township in the juskei riverCampbell, Linda Anne January 1996 (has links)
A dissertation submitted to the Faculty of Engineering, University of the
Witwatersrand, in fulfillment of the requirements for the degree of Master of
Science in Engineering / South Africa, like many other developing countries, is faced with rapid urbanisation
with the associated increase in the pollution load. Much of this pollution is destined
for our watercourses, that eventually run into storage reservoirs which may be used
for drinking water or recreational purposes. This pollution is usually attributed to
human waste products which include nitrogenous wastes, phosphates, microorganisms,
organic material and litter,
A 6km stretch of the Jukskei river just downstream of Alexandra Township, was
used to determine the different biological, physical and chemical processes that
pollutants undergo during natural assimilation, their rates and efficiencies of
assimilation in rivers and their impact Oil the environment downstream of the urban
area. "Grab" samples were taken over a period which included both low-flow and
storm events. Due to the high concentration of nutrients in the run-off from
Alexandra Township, the major changes seen were in the biological conversion of
organic nitrogen compounds and ammonia to nitrates, in the BOD and in the
concentration of dissolved oxygen in the river, with lows of 1.1 to 1.5 mg/l 02
being recorded at Alexandra. A rapid rise in the concentration of faecal coliforms
has been seen with a high of 31 million/100 ml being recorded at Alexandra in
September, 1994. Sedimentation at the Alexandra site is also a common occurrence
with a lot of adsorbed pollutants being effectively removed from the water column
with the suspended solids.
The QUAL2E water quality model, used by the EPA in the United States, was used
to model the reactions that the nutrients, BOD and DO undergo. BOD and DO
were modelled very well with r of 0.98 and 0.94 being calculated respectively.
QUAL2E did not model tile dissolved potlutants, dissolved phosphorus and
ammonia very well with the observed results showing a greater reduction ill these
pollutants. A method by which these pollutants adhere to SS and settle out was / AC2017
|
2 |
Tillämpning av GIS-analyser i MKB / Application of GIS-analyses in EIAWall, Erik January 2006 (has links)
<p>The reason for performing an Environmental Impact Assessment (EIA) is to incorporate environmental concern in different kinds of plans and projects. The purpose of such an assessment is to identify and describe direct, indirect and cumulative environmental impacts.</p><p>Geographical Information System (GIS) is a tool that can be used to combine spatial extension of both sensitive areas and different environmental impacts in a quick and easy way. Because of that, descriptions of environmental impacts and motivation of different standpoints on a specific issue can be more correct and easier to make if GIS is used as a tool.</p><p>Hence, GIS can contribute to improve the quality of Environmental Impact Assessments. If the benefits of using GIS are to out weight the costs, geographical information of satisfactory detail, actuality and accuracy need to be available at reasonable prices.</p><p>In this paper, case studies are carried out for three different geographical analyses to investigate the use of GIS as a tool in EIA. From these case studies, more general conclusions about the benefits and limitations of using GIS for Environmental Impact Assessments are also drawn. The criteria, after which benefits and limitations of GIS have been estimated, are data availability, time consumption for performing the analyses and how the results from the performed analyses can make impact assessments easier, motivate different standpoints and increase the comprehensiveness of the EIA-report.</p><p>The three different GIS-analyses includes calculation of pollution load in a catchment area, estimation of the visual impact from planned buildings and generation of alternative locations for underwater pipes. These analyses have been applied on one ongoing EIA for a freight terminal and one ongoing EIA for an underwater wastewater transmission pipe. The analyses in these case studies have been undertaken with ArcGIS software using the extensions “Spatial Analyst” and “3D Analyst”.</p><p>It is shown in this study that due to uncertainty in available model values and the time consuming data manipulation, it is unlikely that calculations of pollution loads with GIS will be used to any larger extent in EIA. To carry out visual assessments with help of GIS to estimate visual impacts is on the other hand assumed to be useful in EIA-work. Both to assess impacts and to estimate how changes in building design can alter those impacts. To use GIS to produce alternative locations for underwater pipes is also considered valuable in EIA-work, even though there is a considerable lack of data to predict the environmental class of marine areas and the connections between available data and real environmental values are weak. However, the risk of damaging vulnerable and high valued marine areas should decrease when applying this type of analyse.</p> / <p>Miljökonsekvensbeskrivningar (MKB) genomförs för att möjliggöra att hänsyn om miljön tas vid olika typer av exploateringsprojekt och exploateringsplaner. Syftet med en miljökonsekvensbeskrivning är att identifiera och beskriva direkta, indirekta och kumulativa miljöeffekter.</p><p>Geografiska informationssystem (GIS) är ett verktyg som kan användas för att snabbt och enkelt kombinera rumslig utsträckning av både känsliga områden och olika miljökonsekvenser. GIS kan därför användas för att underlätta beskrivningar av miljökonsekvenser och motivera olika ställningstaganden. Därigenom kan GIS bidra till bättre grundade och mer rättvisande miljökonsekvensbeskrivningar. Men för att vinsterna av att genomföra GIS-analyser ska överstiga kostnaderna krävs att geografisk information av tillräcklig detaljeringsgrad, aktualitet och säkerhet finns att tillgå till rimliga kostnader.</p><p>Syftet med denna studie har varit att genom fallstudier undersöka om tre olika GIS-analyser kan användas som verktyg i miljöbedömningar med idag tillgänglig data, samt att utifrån fallstudierna dra mer allmänna slutsatser om vinster och begränsningar av att använda GIS i miljökonsekvensbeskrivningar. De kriterier som har använts för att bedöma vinster och begränsningar är tidsåtgång för analyserna, tillgång på data samt hur analyserna kan vara ett stöd i MKB-arbetet genom att underlätta beskrivningar av konsekvenser, motivera ställningstaganden som görs och öka rapportens begriplighet.</p><p>De tre genomförda GIS-analyserna innefattar beräkning av föroreningsbelastning inom ett avrinningsområde, bedömning av byggnaders landskapspåverkan genom synlighetsanalys samt generering av förslag till alternativ ledningsdragning för en undervattensledning. Dessa analyser har tillämpats på en pågående MKB för en detaljplan för en partihall och en pågående MKB för en avloppsvattenledning under vatten. Analyserna i fallstudierna har genomförts i programmet ArcGIS med tilläggen ”Spatial Analyst” och ”3D Analyst”.</p><p>Studien visar att det på grund av osäkerheter i tillgängliga schablonvärden och tidsåtgång för databehandling är osannolikt att beräkning av föroreningsmängd inom ett avrinningsområde med GIS kommer att användas till någon större utsträckning i MKB. Att med GIS genomföra synlighetsanalyser för att utvärdera landskapspåverkan bedöms däremot kunna användas i MKB, både för att bedöma påverkan och för att utvärdera hur en förändring i en byggnads utformning kan förändra den påverkan. Även att med GIS generera förslag till alternativa ledningsdragningar under vatten bedöms kunna fylla en funktion i MKB trots att tillgången på data för att kunna beskriva olika marina områdens naturvärden är klart bristfällig och kopplingen mellan tillgängliga data och verkliga naturvärden är osäker. Denna typ av analys bör ändå minska risken att värdefulla och skyddsvärda marina områden skadas vid lednignsdragning.</p>
|
3 |
Tillämpning av GIS-analyser i MKB / Application of GIS-analyses in EIAWall, Erik January 2006 (has links)
The reason for performing an Environmental Impact Assessment (EIA) is to incorporate environmental concern in different kinds of plans and projects. The purpose of such an assessment is to identify and describe direct, indirect and cumulative environmental impacts. Geographical Information System (GIS) is a tool that can be used to combine spatial extension of both sensitive areas and different environmental impacts in a quick and easy way. Because of that, descriptions of environmental impacts and motivation of different standpoints on a specific issue can be more correct and easier to make if GIS is used as a tool. Hence, GIS can contribute to improve the quality of Environmental Impact Assessments. If the benefits of using GIS are to out weight the costs, geographical information of satisfactory detail, actuality and accuracy need to be available at reasonable prices. In this paper, case studies are carried out for three different geographical analyses to investigate the use of GIS as a tool in EIA. From these case studies, more general conclusions about the benefits and limitations of using GIS for Environmental Impact Assessments are also drawn. The criteria, after which benefits and limitations of GIS have been estimated, are data availability, time consumption for performing the analyses and how the results from the performed analyses can make impact assessments easier, motivate different standpoints and increase the comprehensiveness of the EIA-report. The three different GIS-analyses includes calculation of pollution load in a catchment area, estimation of the visual impact from planned buildings and generation of alternative locations for underwater pipes. These analyses have been applied on one ongoing EIA for a freight terminal and one ongoing EIA for an underwater wastewater transmission pipe. The analyses in these case studies have been undertaken with ArcGIS software using the extensions “Spatial Analyst” and “3D Analyst”. It is shown in this study that due to uncertainty in available model values and the time consuming data manipulation, it is unlikely that calculations of pollution loads with GIS will be used to any larger extent in EIA. To carry out visual assessments with help of GIS to estimate visual impacts is on the other hand assumed to be useful in EIA-work. Both to assess impacts and to estimate how changes in building design can alter those impacts. To use GIS to produce alternative locations for underwater pipes is also considered valuable in EIA-work, even though there is a considerable lack of data to predict the environmental class of marine areas and the connections between available data and real environmental values are weak. However, the risk of damaging vulnerable and high valued marine areas should decrease when applying this type of analyse. / Miljökonsekvensbeskrivningar (MKB) genomförs för att möjliggöra att hänsyn om miljön tas vid olika typer av exploateringsprojekt och exploateringsplaner. Syftet med en miljökonsekvensbeskrivning är att identifiera och beskriva direkta, indirekta och kumulativa miljöeffekter. Geografiska informationssystem (GIS) är ett verktyg som kan användas för att snabbt och enkelt kombinera rumslig utsträckning av både känsliga områden och olika miljökonsekvenser. GIS kan därför användas för att underlätta beskrivningar av miljökonsekvenser och motivera olika ställningstaganden. Därigenom kan GIS bidra till bättre grundade och mer rättvisande miljökonsekvensbeskrivningar. Men för att vinsterna av att genomföra GIS-analyser ska överstiga kostnaderna krävs att geografisk information av tillräcklig detaljeringsgrad, aktualitet och säkerhet finns att tillgå till rimliga kostnader. Syftet med denna studie har varit att genom fallstudier undersöka om tre olika GIS-analyser kan användas som verktyg i miljöbedömningar med idag tillgänglig data, samt att utifrån fallstudierna dra mer allmänna slutsatser om vinster och begränsningar av att använda GIS i miljökonsekvensbeskrivningar. De kriterier som har använts för att bedöma vinster och begränsningar är tidsåtgång för analyserna, tillgång på data samt hur analyserna kan vara ett stöd i MKB-arbetet genom att underlätta beskrivningar av konsekvenser, motivera ställningstaganden som görs och öka rapportens begriplighet. De tre genomförda GIS-analyserna innefattar beräkning av föroreningsbelastning inom ett avrinningsområde, bedömning av byggnaders landskapspåverkan genom synlighetsanalys samt generering av förslag till alternativ ledningsdragning för en undervattensledning. Dessa analyser har tillämpats på en pågående MKB för en detaljplan för en partihall och en pågående MKB för en avloppsvattenledning under vatten. Analyserna i fallstudierna har genomförts i programmet ArcGIS med tilläggen ”Spatial Analyst” och ”3D Analyst”. Studien visar att det på grund av osäkerheter i tillgängliga schablonvärden och tidsåtgång för databehandling är osannolikt att beräkning av föroreningsmängd inom ett avrinningsområde med GIS kommer att användas till någon större utsträckning i MKB. Att med GIS genomföra synlighetsanalyser för att utvärdera landskapspåverkan bedöms däremot kunna användas i MKB, både för att bedöma påverkan och för att utvärdera hur en förändring i en byggnads utformning kan förändra den påverkan. Även att med GIS generera förslag till alternativa ledningsdragningar under vatten bedöms kunna fylla en funktion i MKB trots att tillgången på data för att kunna beskriva olika marina områdens naturvärden är klart bristfällig och kopplingen mellan tillgängliga data och verkliga naturvärden är osäker. Denna typ av analys bör ändå minska risken att värdefulla och skyddsvärda marina områden skadas vid lednignsdragning.
|
4 |
An assessment of impacts of landfill composition on soil quality, heavy metal and plant health : a case of Lumberstewart landfill in Bulawayo, ZimbabweMakuleke, Peace 02 1900 (has links)
Landfills have served as the major sites for waste disposal in both developed and developing countries. Upon closure of a landfill site, the surface could be converted to a golf course, recreation park, playground, animal refuge, tennis court and industrial site. Even when closed, landfills still have the potential to contaminate the surrounding environment as a result of the migration of leachate from decomposing waste contained in the site. This study focused on assessing the
impacts of a closed landfill on soils and plants at Lumberstewart closed landfill site in Bulawayo, Zimbabwe. Soil samples were collected at three different depths (0-30 cm, 30 - 60 cm and 60-90 cm) at the landfill and a control site. The soil samples were analysed for their texture, pH, electrical conductivity, organic matter content, cation exchange capacity and concentrations of Cd, Cu, Cr, Fe, Ni and Zn. Samples of jimson weed and pigweed growing at the closed landfill and the control
site were collected from the same sites where soil samples were collected, and the concentrations of the same set of heavy metals in these weeds determined. Soil samples were digested using EPA
method 3050B: Acid Digestion of Sediments, Sludge and soils whereas nitric acid and hydrogen peroxide was used for digestion of plant samples. Both plant and soil digests were analyzed for heavy metals concentrations using Flame Atomic Absorption Spectrometry (AAS). Soils from the landfill as well as the control site had a high content of sand with soil pH values which were alkaline. The electrical conductivity values of the soil samples were relatively low ranging from 0.39 to 1.67 dS/m, indicating low levels of salts in soils at the landfill. The concentrations of heavy metals at the closed landfill site were higher than the control site. Heavy metals concentrations in soils at the closed landfill followed the order Fe>Zn>Cu>Cr>Ni>Cd. Results indicated that Fe was exceptionally higher than the other metals with concentration values averaging 45690±17255 mg/kg. Cadmium on the other hand had the least concentration with values of 0.01±0.00 mg/kg.
Values of Enrichment Factors of heavy metals around the soil at different depths indicated that the enrichment of heavy metals increased with depth at the landfill up to 30-60 cm after which a
decrease was observed. Values for heavy metal Contamination Factor of soils around the landfill ranged from low concentration (CF<1) to very high concentration (CF>6). The Pollution Load Index (PLI) values for the soil at the Lumberstewart landfill indicated that all sites were polluted (PLI>1). Site 6 had significantly higher mean concentration of heavy metals in soils at the landfill whereas site 11 had the least. The concentrations of Cd and Ni in soils at the landfill were below
permissible limits of South African National Norms and Standards (NNS) as prescribed by NEMA (2008) in South Africa whereas Cr, Cu and Zn in soils were above the NNS permissible limits.
Heavy metal concentrations in soils at the landfill were above World Health (WHO) permissible limits except for Cd which was equal (0.01 mg/kg) to the permissible values of Cd in the soils at sites 5, 8, 9, 10, 11 and 12. Mean concentrations of heavy metals in jimson weed and pigweed were in the order Fe>Zn>Cu>Cr>Ni>Cd. The concentrations of Cd, Cr, Cu, Fe and Zn in both plants from all sites at the landfill were significantly higher than the control site. Heavy metal transfer coefficient for both plants indicated that heavy metal uptake was more species dependent than soil heavy metal concentration dependent. The results from this research indicate that though the Lumberstewart Landfill has been closed, it is still affecting the soils in the vicinity of the
landfill. Plants and water around the Lumberstewart closed landfill could be at risk from heavy metal contamination. High concentrations of heavy metals observed in the soil could present a health risk to communities should they decide to use the landfill site for arable purposes. / Environmental Sciences / M. Sc. (Environmental Science)
|
Page generated in 0.0815 seconds