• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 9
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 19
  • 11
  • 11
  • 11
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Polymer Nanocomposites in Thin Film Applications

Fogelström, Linda January 2010 (has links)
The introduction of a nanoscopic reinforcing phase to a polymer matrix offers great possibilities of obtaining improved properties, enabling applications outside the boundaries of traditional composites. The majority of the work in this thesis has been devoted to polymer/clay nanocomposites in coating applications, using the hydroxyl-functional hyperbranched polyester Boltorn® as matrix and montmorillonite clay as nanofiller. Nanocomposites with a high degree of exfoliation were readily prepared using the straightforward solution-intercalation method with water as solvent. Hard and scratch-resistant coatings with preserved flexibility and transparency were obtained, and acrylate functionalization of Boltorn® rendered a UV-curable system with similar property improvements. In order to elucidate the effect of the dendritic architecture on the exfoliation process, a comparative study on the hyperbranched polyester Boltorn® and a linear analogue of this polymer was performed. X-ray diffraction and transmission electron microscopy confirmed the superior efficiency of the hyperbranched polymer in the preparation of this type of nanocomposites. Additionally, an objective of this thesis was to investigate how cellulose nanofibers can be utilized in high performance polymer nanocomposites. A reactive cellulose “nanopaper” template was combined with a hydrophilic hyperbranched thermoset matrix, resulting in a unique nanocomposite with significantly enhanced properties. Moreover, in order to fully utilize the great potential of cellulose nanofibers as reinforcement in hydrophobic polymer matrices, the hydrophilic surface of cellulose needs to be modified in order to improve the compatibility. For this, a grafting-from approach was explored, using ring-opening polymerization of ε-caprolactone (CL) from microfibrillated cellulose (MFC), resulting in PCL-modified MFC. It was found that the hydrophobicity of the cellulose surfaces increased with longer graft lengths, and that polymer grafting rendered a smoother surface morphology. Subsequently, PCL-grafted MFC film/PCL film bilayer laminates were prepared in order to investigate the interfacial adhesion. Peel tests demonstrated a gradual increase in the interfacial adhesion with increasing graft lengths. / QC20100621
42

Synthesis and Properties of Branched Semi-Crystalline Thermoset Resins

Claesson, Hans January 2003 (has links)
<p>This thesis describes the synthesis and characterization ofbranched semi-crystalline polymers. Included in this work isthe SEC characterization of a series of dendrimers. Thebranched semi-crystalline polymers were synthesized in order toinvestigate the concept of their use as powder coatings resins.This concept being that the use of branched semi-crystallinepolymers in a UV-cured powder coating system may offer a lowertemperature alternative thus allowing the use of heat sensitivesubstrates and the added benefit of a reduced viscositycompared to linear polymers.</p><p>A series of branched poly(ε-caprolactone)’s (PCL)(degree of polymerization: 5-200) initiated from hydroxylfunctional initiators were synthesized. The final architectureswere controlled by the choice of initiator structure;specifically the dendritic initiators yielded starbranchedPCL’s while the linear initiator yielded comb-branchedPCL’s. The dendritic initiators utilized were: (1) a3rd-generation Boltorn H-30, commercially availablehyperbranched polyester with approximately 32 hydroxyl groups,(2) a 3rd-generation dendrimer with 24 hydroxyl groups, and (3)a 3rd-generation dendron with 8 hydroxyl groups. Linear PCL wassynthesized for comparison. All dendritic initiators are basedon 2,2- bis(methylol) propionic acid. The comb-branchedpolymers were initiated from a modified peroxide functionalpolyacrylate. The resins were end-capped withmethylmethacrylate in order to produce a cross-linkable system.The polymers and films were characterized using 1H NMR, 13CNMR, SEC, DMTA, DSC, FT-IR, FT-Raman, rheometry and a rheometercoupled to a UV-lamp to measure cure behavior.</p><p>The star-branched PCL’s exhibited considerably lowerviscosities than their linear counterparts with the samemolecular weight for the molecular region investigated (2-550kg mol-1). It was also found that the zero shear viscosityincreased roughly exponentially with M.</p><p>The PCL star-branched resins are semi-crystalline and theirmelting points (Tm) range from 34-50°C; films can beformed and cured below 80°C. The viscoelastic behaviourduring the cure showed that the time to reach the gel point, afew seconds, increased linearly with molecular weight. Thecrossover of G’and G’’was used as the gelpoint. Measurement of mechanical properties of films showedthat the low molecular weight polymers were amorphous whilethose with high molecular weight were crystalline after cure.The polymerization of 5,5-dimethyl-1,3-dioxane-2-one (NPC) fromoligo- and multifunctional initiators was evaluated utilizingcoordination and cationic polymerization. Two tin basedcatalysts, stannous(II) 2-ethylhexanoate and stannous(II)trifluoromethane sulfonate, were compared with fumaric acid.Fumaric acid under bulk conditions resulted in lowerpolydispersity and less chance of gelling. The synthesis ofstar-branched polymers was confirmed by SEC data. The starpolymers exhibited a Tg at 20-30°C and a Tm at about100°C.</p><p>All semi-crystalline resins exhibited a fast decrease inviscosity at Tm. Blends of combbranched semi-crystalline resinsand amorphous resins exhibited a transition behavior inbetweenthat of pure semi-crystalline resins and that of amorphousresins.</p><p>The SEC characterization of a series of dendrimers withdifferent cores and terminal groups showed that the core had animpact on the viscosimetric radius of the core while theterminal groups appeared to have no effect.</p><p><b>Keywords:</b>star-branched, semi-crystalline,comb-branched, ring-opening polymerization,poly(ε-caprolactone), dendritic, thermoset, lowtemperature curing, powder coating, UVcuring,poly(5,5-dimethyl-1,3-dioxane-2-one), size exclusionchromatography, rheology, dendritic aliphatic polyester</p>
43

Synthesis and Properties of Branched Semi-Crystalline Thermoset Resins

Claesson, Hans January 2003 (has links)
This thesis describes the synthesis and characterization ofbranched semi-crystalline polymers. Included in this work isthe SEC characterization of a series of dendrimers. Thebranched semi-crystalline polymers were synthesized in order toinvestigate the concept of their use as powder coatings resins.This concept being that the use of branched semi-crystallinepolymers in a UV-cured powder coating system may offer a lowertemperature alternative thus allowing the use of heat sensitivesubstrates and the added benefit of a reduced viscositycompared to linear polymers. A series of branched poly(ε-caprolactone)’s (PCL)(degree of polymerization: 5-200) initiated from hydroxylfunctional initiators were synthesized. The final architectureswere controlled by the choice of initiator structure;specifically the dendritic initiators yielded starbranchedPCL’s while the linear initiator yielded comb-branchedPCL’s. The dendritic initiators utilized were: (1) a3rd-generation Boltorn H-30, commercially availablehyperbranched polyester with approximately 32 hydroxyl groups,(2) a 3rd-generation dendrimer with 24 hydroxyl groups, and (3)a 3rd-generation dendron with 8 hydroxyl groups. Linear PCL wassynthesized for comparison. All dendritic initiators are basedon 2,2- bis(methylol) propionic acid. The comb-branchedpolymers were initiated from a modified peroxide functionalpolyacrylate. The resins were end-capped withmethylmethacrylate in order to produce a cross-linkable system.The polymers and films were characterized using 1H NMR, 13CNMR, SEC, DMTA, DSC, FT-IR, FT-Raman, rheometry and a rheometercoupled to a UV-lamp to measure cure behavior. The star-branched PCL’s exhibited considerably lowerviscosities than their linear counterparts with the samemolecular weight for the molecular region investigated (2-550kg mol-1). It was also found that the zero shear viscosityincreased roughly exponentially with M. The PCL star-branched resins are semi-crystalline and theirmelting points (Tm) range from 34-50°C; films can beformed and cured below 80°C. The viscoelastic behaviourduring the cure showed that the time to reach the gel point, afew seconds, increased linearly with molecular weight. Thecrossover of G’and G’’was used as the gelpoint. Measurement of mechanical properties of films showedthat the low molecular weight polymers were amorphous whilethose with high molecular weight were crystalline after cure.The polymerization of 5,5-dimethyl-1,3-dioxane-2-one (NPC) fromoligo- and multifunctional initiators was evaluated utilizingcoordination and cationic polymerization. Two tin basedcatalysts, stannous(II) 2-ethylhexanoate and stannous(II)trifluoromethane sulfonate, were compared with fumaric acid.Fumaric acid under bulk conditions resulted in lowerpolydispersity and less chance of gelling. The synthesis ofstar-branched polymers was confirmed by SEC data. The starpolymers exhibited a Tg at 20-30°C and a Tm at about100°C. All semi-crystalline resins exhibited a fast decrease inviscosity at Tm. Blends of combbranched semi-crystalline resinsand amorphous resins exhibited a transition behavior inbetweenthat of pure semi-crystalline resins and that of amorphousresins. The SEC characterization of a series of dendrimers withdifferent cores and terminal groups showed that the core had animpact on the viscosimetric radius of the core while theterminal groups appeared to have no effect. Keywords:star-branched, semi-crystalline,comb-branched, ring-opening polymerization,poly(ε-caprolactone), dendritic, thermoset, lowtemperature curing, powder coating, UVcuring,poly(5,5-dimethyl-1,3-dioxane-2-one), size exclusionchromatography, rheology, dendritic aliphatic polyester / <p>NR 20140805</p>
44

Optimalizace produkce vybraných enzymů pomocí Bacillus subtilis / Optimization of the Production of Lipases by Bacillus subtilis

Slavíčková, Radka January 2012 (has links)
In this thesis, optimization of production of lipolytic enzymes by submerzed cultivation of Bacillus subtilis (BS) was studied. Production of lipolytic enzymes was tested in three nutrient media, which differed mainly in main sources of carbon, respectively of nitrogen. The first medium contained mainly extract from calf brain and beef heart (BHIB), the second medium contained peptone and yeast extract (NB) and the third one contained peptone and yeast extract with the addition of 2% (w/v) glucose (NBG). The highest lipolytic activity (0.0784 Uml-1) was measured in NBG medium. Maximum of lipolytic activity was observed before the end of the exponential phase of BS growth in all the media. Temperature optimum in NBG medium was determined from 30 to 50 °C, pH optimum in the range of 5 to 11 and subsequently the temperature stability of lipolytic enzymes produced by the BS was estimated. The activity value was determined spectrometrically using p-nitrophenyllaurate as a substrate. Produced lipolytic enzymes showed maximum activity at 37 °C in the alkaline pH of 8.0. Measurement of temperature stability showed that lipolytic enzymes are relatively thermostable enzymes retaining 100 % of the activity even after 1 hour of cultivation at 30 - 50 °C. The presence of 1% (w/v) olive oil in medium NBG caused a decrease in lipolytic activity by 65 % as well as in pH from 6.5 to 5.4 after 14 days of cultivation. After substitution of glucose by fructose in medium NBG, lipolytic activity showed comparable values during the first week of cultivation. On the other hand, the decrease of lipolytic activity by 29 % in the medium with fructose was observed after 14 days of cultivation. A procedure for the identification of lipolytic enzymes of BS by peptide massfingerprinting was developed to understand the potential of synthetic polyester - poly(e-caprolactone) as a lipase inductor. Degradation study of commercial polyester poly(e-caprolactone) was carried out by submerged cultivation of Bacillus subtilis in NBG medium at initial pH 7.0 and 30 °C for 14 days. PCL (Mn = 10,000, Mw = 14 000) was studied in the form of films (1.0 x 1.0 cm), which were prepared by melt-pressing, rapid cooling of the melt to 4 °C and evaporation of the solvent from 2 % dichlormethane solution. The evaluation of the films shown occurrence of weight loss (7.8 - 17.0 wt.%) together with the formation of numerous holes and cracks in the sample surface in relation to the method of the films preparation. Lipolytic activity values increased by 9 - 17 % in the degradation media compared to control samples. Densitometric monitoring showed also higher increase in cell mass in the degradation medium compared with control samples. Based on the results obtained, the degradation process induced by BS could be suggested.
45

Single-Step Covalent Functionalization of Polylactide Surfaces / Nano Patterened Covalent Surface Modification of Poly(ε-caprolactone)

Källrot, Martina January 2005 (has links)
<p>Degradable polymers have gained an increased attention in the field of biomedical applications over the past decades, for example in tissue engineering. One way of improving the biocompatibility of these polymers is by chemical surface modification, however the risk of degradation during the modification procedure is a limiting factor. In some biomedical applications, for example in nerve guides, a patterned surface is desired to improve the cell attachment and proliferation.</p><p>In this thesis a new non-destructive, single-step, and solvent free method for surface modification of degradable polymers is described. Poly(L-lactide) (PLLA) substrates have been functionalized with one of the following vinyl monomers; N-vinylpyrrolidone (VP), acrylamide (AAm), or maleic anhydride (MAH) grafts. The substrates were subjected to a vapor phase atmosphere constituted of a mixture of a vinyl monomer and a photoinitiator (benzophenone) in a closed chamber at very low pressure and under UV irradiation. Poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(trimethylene carbonate) (PTMC) have been surface modified with VP using the same procedure to show the versatility of the method. The wettability of all of the four substrates increased after grafting. The surface compositions were confirmed by ATR-FTIR and XPS. The VP grafted PLLA, PTMC and PLGA substrates have been shown to be good substrates for the normal human cells i.e. keratinocytes and fibroblasts, to adhere and proliferate on. The topography of substrates with well defined nano patterns was preserved during grafting, since the grafted layer is very thin. We have also shown that the method is useful for a simultaneous chemical and topographical modification of substrates by masked vapor phase grafting. The surface topography was determined with SEM and AFM.</p> / <p>Intresset för användningen av nedbrytbara polymerer till biomedicinska applikationer som till exempel vävnads rekonstruktion har ökat avsevärt de senaste decennierna. Ett sätt att öka biokompatibiliteten hos dessa polymerer är genom kemisk ytmodifiering, men risken för nedbrytning under själva modifieringen är en begränsande faktor. I vissa biomedicinska applikationer, till exempel nervguider, är det önskvärt att ha en väldefinierad ytstruktur för att öka vidhäftningen och tillväxten av celler.</p><p>I den här avhandlingen presenteras en ny ickeförstörande, lösningsmedelsfri enstegsprocess för ytmodifiering av nedbrytbara polymerer. Substrat av poly(L-laktid) (PLLA) har ytfunktionaliserats med var och en av följande vinylmonomerer, N-vinylpyrrolidon (VP), akrylamid (AAm) eller maleinsyraanhydrid (MAH). Substraten har exponerats för en gasfasatmosfär av en blandning av en vinylmonomer och en fotoinitiator (bensofenon) i en tillsluten reaktor vid mycket lågt tryck och under UV-strålning. Metodens mångsidighet har även påvisats genom att ytmodifiera substrat av poly(ε-kaprolakton) (PCL), poly(laktid-co-glykolid) (PLGA) och poly(trimetylen karbonat) (PTMC) med VP. Vätbarheten ökade för alla fyra materialen efter ympning med en vinylmonomer. Ytsammansättningen fastställdes med ATR-FTIR och XPS. De VP ympade filmerna av PLLA, PLGA och PTMC visade sig vara bra substrat för mänskliga celler, i detta fall keratinocyter och fibroblaster, att vidhäfta och växa på. Yttopografin hos filmer med väldefinierade nanomönstrade ytor kunde bevaras efter ympning, tack vare att det ympade lagret är så tunt. Gasfas metoden har också visat sig användbar för att simultant ytmodifiera både kemiskt och topografiskt genom maskad gasfasympning. Yttopografin bestämdes med SEM och AFM.</p>
46

Covalent Surface Modification of Degradable Polymers for Increased Biocompatibility / Nano Patterened Covalent Surface Modification of Poly(ε-caprolactone)

Källrot, Martina January 2005 (has links)
Degradable polymers have gained an increased attention in the field of biomedical applications over the past decades, for example in tissue engineering. One way of improving the biocompatibility of these polymers is by chemical surface modification, however the risk of degradation during the modification procedure is a limiting factor. In some biomedical applications, for example in nerve guides, a patterned surface is desired to improve the cell attachment and proliferation. In this thesis a new non-destructive, single-step, and solvent free method for surface modification of degradable polymers is described. Poly(L-lactide) (PLLA) substrates have been functionalized with one of the following vinyl monomers; N-vinylpyrrolidone (VP), acrylamide (AAm), or maleic anhydride (MAH) grafts. The substrates were subjected to a vapor phase atmosphere constituted of a mixture of a vinyl monomer and a photoinitiator (benzophenone) in a closed chamber at very low pressure and under UV irradiation. Poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(trimethylene carbonate) (PTMC) have been surface modified with VP using the same procedure to show the versatility of the method. The wettability of all of the four substrates increased after grafting. The surface compositions were confirmed by ATR-FTIR and XPS. The VP grafted PLLA, PTMC and PLGA substrates have been shown to be good substrates for the normal human cells i.e. keratinocytes and fibroblasts, to adhere and proliferate on. The topography of substrates with well defined nano patterns was preserved during grafting, since the grafted layer is very thin. We have also shown that the method is useful for a simultaneous chemical and topographical modification of substrates by masked vapor phase grafting. The surface topography was determined with SEM and AFM. / Intresset för användningen av nedbrytbara polymerer till biomedicinska applikationer som till exempel vävnads rekonstruktion har ökat avsevärt de senaste decennierna. Ett sätt att öka biokompatibiliteten hos dessa polymerer är genom kemisk ytmodifiering, men risken för nedbrytning under själva modifieringen är en begränsande faktor. I vissa biomedicinska applikationer, till exempel nervguider, är det önskvärt att ha en väldefinierad ytstruktur för att öka vidhäftningen och tillväxten av celler. I den här avhandlingen presenteras en ny ickeförstörande, lösningsmedelsfri enstegsprocess för ytmodifiering av nedbrytbara polymerer. Substrat av poly(L-laktid) (PLLA) har ytfunktionaliserats med var och en av följande vinylmonomerer, N-vinylpyrrolidon (VP), akrylamid (AAm) eller maleinsyraanhydrid (MAH). Substraten har exponerats för en gasfasatmosfär av en blandning av en vinylmonomer och en fotoinitiator (bensofenon) i en tillsluten reaktor vid mycket lågt tryck och under UV-strålning. Metodens mångsidighet har även påvisats genom att ytmodifiera substrat av poly(ε-kaprolakton) (PCL), poly(laktid-co-glykolid) (PLGA) och poly(trimetylen karbonat) (PTMC) med VP. Vätbarheten ökade för alla fyra materialen efter ympning med en vinylmonomer. Ytsammansättningen fastställdes med ATR-FTIR och XPS. De VP ympade filmerna av PLLA, PLGA och PTMC visade sig vara bra substrat för mänskliga celler, i detta fall keratinocyter och fibroblaster, att vidhäfta och växa på. Yttopografin hos filmer med väldefinierade nanomönstrade ytor kunde bevaras efter ympning, tack vare att det ympade lagret är så tunt. Gasfas metoden har också visat sig användbar för att simultant ytmodifiera både kemiskt och topografiskt genom maskad gasfasympning. Yttopografin bestämdes med SEM och AFM. / QC 20101014

Page generated in 0.0486 seconds