• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis Characterization and Biodegradation Poly (Ester Amide) Based Hydrogels

Yu, Tianyi 18 June 2013 (has links)
No description available.
2

Synthesis and Characterization of Thermally Stable Fully Bio-based Poly(ester amide)s from Sustainable Feedstock

Munyaneza, Nuwayo Eric 07 August 2020 (has links)
Lignin-derived precursors were used in the synthesis of bio-based high-performance polymers. The project consisted of synthesizing a series of poly(ester amide)s (PEAs) from lignin building blocks and natural amino acids. In particular, the amino acid moieties were incorporated into the PEAs’ architecture to explore the effect of the side-chain size on the thermal properties and the crystallinity of the resulting materials. The polymers, which were prepared by melt polycondensation, all possessed high thermal stability in nitrogen and air with onsets of thermal degradation (Td onset) exceeding 330 °C and glass transition temperatures (Tg) ranging from 136 °C – 238 °C. It is worth noting that the Tg greatly depended on the size of the pendant R-group on the amino acid. Remarkably, the thermal stability was mostly maintained even after subjecting the polymers to various pH media (pH 1, 4 and 8) for 1 week at 50 °C. Furthermore, wide-angle X-ray scattering experiments revealed semi-crystalline polymers with identical diffraction patterns and percent crystallinity ranging from 21 – 37%. To probe the impact of chirality on the thermal properties, a meso polymer of DL-alanine was prepared and compared to the chiral version. A slight drop in the Td onset and Tg of the DL-alanine-containing polymer relative to the L-alanine counterpart occurred, signifying moderate thermal stability resulting from the chiral group. Overall, these characteristics make these bio-based PEAs potential candidates for further investigation as alternatives to petrochemical-derived thermoplastics for high-performance materials.
3

Biodegradable Polymers for Drug Delivery and Tissue Engineering

Natarajan, Janeni January 2017 (has links) (PDF)
Regeneration, a spontaneous response of bones in response to injuries, infections and fractures, is severely compromised in certain clinical circumstances. Unfortunately, several shortcomings are associated with the current treatment of bone grafting method such as donor shortage and immune response for allografts and donor morbidity for autografts. Thus, the development of clinical alternates is essential. One promising adjunct method is bone tissue engineering that includes the implantation of a scaffold containing the cells with the supplementation of suitable growth factors. Among the various classes of materials, biodegradable polymers are commonly preferred because their use does not necessitate a secondary surgery for their removal after the intended use. Commercially available polymers such as poly (lactic- co- glycolic acid) and polycaprolactone are expensive and degrade slowly. This motivates the development of novel synthetic biodegradable polymers that are affordable and can be tuned to tailor for specific biomedical applications. The primary aim of this thesis is to synthesize effective biodegradable polymers for drug delivery and bone tissue engineering. The properties of these polymers such as modulus, hydrophobicity and crosslinking etc. were tailored based on the variations in chemical bonds, chain lengths and the molar stoichiometric ratios of the monomers for specific clinical applications. Based on the above variations, degradation and release kinetics were tuned. The cytocompatibilty properties for these polymers were studied and suitable mineralization studies were conducted to determine their potential for bone regeneration.

Page generated in 0.0745 seconds