• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulation of Factors Guiding Neotissue Formation for Improvement in Tissue Engineered Vascular Grafts and Wound Healing

Zbinden, Jacob C. January 2021 (has links)
No description available.
2

Development of a tissue engineering strategy to create highly compliant blood vessels

Crapo, Peter Maughan 16 December 2008 (has links)
Compliance mismatch is a significant hurdle to long-term patency in small-diameter arterial bypass grafts. Vascular tissue engineering has the potential to produce compliant, non-thrombogenic small-diameter grafts. However, current engineered grafts are relatively non-compliant, resulting in intimal hyperplasia and graft occlusion when subjected to arterial pressures. This research investigates the mechanical and biological properties of engineered constructs based on a biodegradable synthetic elastomer, poly(glycerol sebacate) (PGS). Several methods for fabricating porous PGS scaffolds in a tubular geometry were developed and compared. Adult baboon vascular cells were cultured in the scaffolds under various in vitro experimental conditions, including variations in initial cell seeding density, the type of scaffold used for culture, culture time, scaffold material, and hydrostatic pressure, and properties of the resultant constructs were compared. Scaffold fabrication using heat-shrinkable mandrels and glass tubes coated with hyaluronic acid significantly decreased tolerances of wall thickness and mechanical properties, improved handling, and decreased culture time required to reach luminal cellular confluence compared to scaffolds made with other fabrication techniques. Altering scaffold material from PGS to poly(lactide-co-glycolide) (PLGA), a benchmark biomaterial, did not affect scaffold yield, porosity, or luminal cellular confluence. Extracellular matrix (ECM) deposition increased with SMC-only culture time, and ECM deposition and remodeling during culture influenced construct compliance. Compared to PLGA scaffolds, PGS scaffolds promoted elastin crosslinking by SMCs and elastic tissue properties but attenuated collagen deposition. Hydrostatic pressure promoted ECM synthesis and deposition by SMCs and decreased construct compliance. Collagen and crosslinked elastin content in constructs correlated positively with construct burst pressure, and a negative correlation dependent on scaffold type was found between collagen content and construct compliance at low pressures. The systematic investigation of culture conditions in this research provides insights into the control of engineered blood vessel properties. The central hypothesis of this work, that grafts engineered from PGS scaffolds and adult vascular cells under biomimetic in vitro culture conditions can possess compliance comparable to autologous vessels, is true at pressures below 60 mmHg and demonstrates potential for PGS-based vascular tissue engineering. Overall, this work provides tools for engineering tubular soft tissues based on porous PGS scaffolds.
3

Protein-Engineered Soft Functional Materials for Bioelectronics / Proteintekniska mjuka funktionella material med tillämpningar inom bioelektronik

Hörberg, Moa January 2024 (has links)
The field of soft electronics is rapidly growing as there is an increased demand for health monitoring using wearable electronics that conforms to biological tissue. To promote sustainability and reduce electronic waste, it is of interest to find ways to reuse low-value-added commodities, such as protein-rich byproducts, for materials in high-value-added technologies that are degradable at end of use. One recognised byproduct from meat production is the abundant protein collagen, or the hydrolysed derivative gelatine. To overcome the limited mechanical properties of gelatine, it can be functionalised with a polymer with previous use in tissue-engineering and battery encapsulation, namely Poly(Glycerol Sebacate)(PGS), to generate the copolymer PGS-G. The work described in this thesis focuses on PGS and PGS-G polymer characterisation by utilising ATR-FTIR and DSC, but also on material characterisation of mechanical and hydration properties, ionic conductivity, and degradation. The results indicate that the successfully synthesised PGS and PGS-G polymers should not be crosslinked completely to achieve the most flexible mechanical properties, but also that crosslinking density should be tuned to suit the application. Moreover, incorporation of gelatine in PGS resulted in increased hydrophilicity for PGS-G. Finally, it was concluded that PGS is suitable for encapsulation whereas PGS-G could be used as an active component. Future work should include degradation studies in vivo and under environmental aerobic conditions to ensure that the polymers are fully biodegradable. / Mjuk elektronik är ett nytt forskningsområde som utvecklas starkt i takt med den ökade efterfrågan på hälsoövervakning med innovativ elektronik som är mjuk och töjbar vilket möjliggör smidig integrering i biologisk vävnad. För att främja hållbarhet och minska elektroniskt avfall så är det av intresse att återanvända lågt värderade handelsvaror, såsom proteinrika restprodukter från industrin, till att skapa funktionella material för värdeskapande teknologier vilka är nedbrytbara efter användning. En välkänd restprodukt från köttproduktion är proteinet kollagen och dess hydrolyserade derivat gelatin. För att förbättra de mekaniska egenskaperna hos gelatin så kan det funktionaliseras med en polymer, vid namn Poly(Glycerol Sebacate)(PGS), som tidigare har använts för att skapa substitut till biologisk vävnad och batteriinkapsling. Denna reaktion genererar den nya polymeren PGS-G. I det här examensarbetet beskrivs karaktärisering av polymererna PGS och PGS-G, som utfördes med ATR-FTIR och DSC, samt karaktärisering av materialets mekaniska och hydrerande egenskaper men även dess ledningsförmåga och nedbrytbarhet. Resultaten indikerar att polymererna PGS och PGS-G ej bör tvärbindas fullständigt för att uppnå optimala mekaniska egenskaper med avseende på flexibilitet men också att tvärbindningen ska justeras beroende på tillämpningen. Vidare bidrar inkorporeringen av gelatin i PGS till en ökad hydrofilicitet i PGS-G. Slutligen visades det att PGS är lämpligt för inkapsling medan PGS-G kan användas som en aktiv komponent. Innan tillämpning behöver ytterligare studier genomföras med avseende på nedbrytbarhet, dels in vivo, dels i aerobiska förhållanden, för att säkerhetsställa att polymererna är fullständigt nedbrytbara.

Page generated in 0.0572 seconds