• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The characterisation and adsorption of vinyl alcohol vinyl acetate copolymers

Croot, Robert Arthur January 1990 (has links)
No description available.
2

Ultrasonic wave propagation in poly(vinyl alcohol) and articular cartilage

Hsu, Hsingching 07 July 2004 (has links)
An ultrasonic nondestructive evaluation (NDE) technique has been developed to characterize the superficial layer of articular cartilage. The technique utilizes the unique properties of surface waves to detect changes in mechanical properties of the surface layer of the test sample. Experiments were performed first on poly(vinyl alcohol) (PVA) hydrogels, a material used to model articular cartilage, to examine repeatability and the ability of wave propagation parameters to reflect changes in material properties. Dynamic shear and compression tests were performed on 20% and 25% PVA by weight hydrogels to examine the difference in material properties. Ultrasonic NDE tests with longitudinal, shear and surface waves were performed on the hydrogels. Wave speeds in the 20% and 25% hydrogels were compared. Results showed that ultrasonic NDE with surface waves was repeatable and the technique was able to detect material property changes in hydrogels. Ultrasonic NDE tests with surface waves were then performed on healthy and damaged bovine articular cartilage. Wave speeds in the healthy cartilage were compared to speeds in enzymatically digested cartilage. Results showed that ultrasonic NDE with surface waves was repeatable and the technique was able to detect material property changes in the superficial layer of articular cartilage. Findings suggest that the technique has potential to be a tool in diagnosing diseases involving cartilage degeneration, such as osteoarthritis.
3

Emulsion polymerization of vinyl acetate with renewable raw materials as protective colloids / Emulsionpolymerisation  av vinylacetat med förnyelsebara skyddskolloider

Lange, Hanna January 2011 (has links)
Emulsion polymerizations of vinyl acetate (VAc) were performed by fully or partially replacing poly(vinyl alcohol) (PVA) with renewable materials as protective colloids or by adding renewable materials, as additives or fillers, to the emulsions during or after polymerization. The purpose of the study was to increase the amount of renewable materials in the emulsion. A total of 19 emulsions were synthesized. Different recipes were used for the synthesis. The following renewable materials were studied; hydroxyethyl cellulose (HEC) with different molecular weights, starch and proteins. HEC and starch were used as protective colloids. Proteins were used as additives or fillers. Cross-linking agent A and Cross-linking agent B were used as cross-linking agents. A total of 26 formulations were pressed, either cold or hot. The synthesized emulsions were evaluated with respect to pH, solids content, viscosity, minimum film formation temperature (MFFT), glass transition temperature (Tg), particle size and molecular weight (Mw). The tensile shear strengths of the emulsions were evaluated according to EN 204 and WATT 91. It was possible to fully, or partially, replace PVA as protective colloid with renewable materials. It was also possible to use renewable materials as additives or fillers in the emulsions. The emulsions obtained properties that differed from the reference. Generally, emulsions with HEC as protective colloid showed lower viscosity and slightly higher MFFT, Tg and molecular weight than emulsions with PVA as protective colloid. Larger particle sizes than the reference were obtained for emulsions containing PVA combined with renewable materials. The emulsion with starch as protective colloid exhibited the largest particle size. 10 formulations passed the criteria for D2. The emulsions where PVA was fully or partially replaced with HEC or starch showed a water resistance similar to the reference (around D2). The addition of protein did not decrease the water and heat resistance compared to the reference. Addition of protein after polymerization increased the water resistance (D2) compared to addition during polymerization. Addition of cross-linking agents did not increase the water resistance further. Two formulations passed the criteria for D3. The emulsion in the first formulation had PVA as protective colloid and protein B was added during polymerization. The emulsion in the second formulation had HEC as protective colloid. To both of these emulsions, protein A was added after polymerization, as a filler, combined with Cross-linking agent B as cross-linking agent before hot pressing. The first formulation also showed a good heat resistance (passed the criteria for WATT 91).
4

The Development of a Transparent Poly(vinyl alcohol) Radiochromic Cryogel Dosimeter and Optical Detection Methods

Eyadeh, Molham 08 December 2015 (has links)
In radiation therapy, gel dosimetry is used to measure radiation doses for treatment verification. Gel dosimeters have the ability to record dose information in three dimensions. The objective of this thesis was to fabricate a transparent cryogel radiochromic dosimeter with poly(vinyl alcohol) (PVA) as the gelling agent. A transparent dosimeter may be analyzed using an optical read out technique, which is desirable. PVA cryogels can be made transparent by adding dimethyl sulfoxide (DMSO). Measurements of dose response were performed and various parameters were adjusted, including: numbers of freeze-thaw cycles (FTCs); concentrations of PVA; DMSO concentration. The measured absorption coefficient increased linearly with dose up to approximately 10 Gy. The sensitivity was increased for higher PVA concentrations, larger numbers of FTCs, and less DMSO. The resulting dosimeter was stable and showed no significant dose rate or photon energy dependence. The cryogels were later formed into 5 mm thick films and used as a tool for performing in vivo dosimetry. The dose response of the radiochromic bolus was characterized by irradiating it on a flat surface at different gantry angles. The dose measured in the bolus was approximately 0.80 of the dose measured by Gafchromic film at the skin surface, taking the obliquity into account. IMRT treatments were delivered to a RANDO phantom. The radiochromic bolus was used to measure skin surface dose in two dimensions at various locations. The 0.80 factor was used to calibrate the bolus, which was then compared to an accompanying film measurement. Good agreement was observed between the measurements (>95% gamma pass rate), suggesting the radiochromic bolus may be suitable for in vivo applications. The radiochromic bolus was then used to evaluate errors associated with the breath hold technique often used with left chest wall tangential irradiation. Treatment plan incorporating the radiochromic bolus was delivered at the planned position and shifted anterior-posteriorly (A/P) up to 5 mm. Large discrepancies from the planned two dimensional skin surface distribution were observed for shifts as small as 3 mm in the A/P direction. The study demonstrated that the cryogel was sensitive to small positioning uncertainties for chest wall irradiations, potentially allowing for the detection of clinically relevant errors. Other potential formulations of PVA-based radiochromic cryogels are discussed briefly as avenues to future research projects. / Thesis / Doctor of Philosophy (PhD)
5

Matrix manipulation to study ECC behaviour

Song, Gao 03 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2005. / 192 leaves on CD format, preliminary i-xii pages and numbered pages 1-135. Includes bibliography, list of figures and tables. / ENGLISH ABSTRACT: As a fibre reinforced material, engineered cementitious composite (ECC) has tough, strain-hardening behaviour in tension despite containing low volumes of fibres. This property can be brought about by developments in fibre, matrix and interfacial properties. Poly Vinyl Alcohol (PVA) fibre has been developed in recent years for ECC, due to its high tensile strength and elasticity modulus. However, the strong interfacial bond between fibre surface and matrix is a challenge for its application. This study focuses on the tailoring of matrix and fibre/matrix interfacial properties by cement replacement with fly ash (FA) and Ground Granulated Corex Slagment (GGCS). In this study the direct tensile test, three point bending test, micro-scale analysis, such as X-Ray Fluorescence Spectrometry analysis (XRF), Scanning Electron Microscope (SEM), are employed to investigate the influence of cement replacement, aging, Water/Binder (W/B) ratio, workability on ECC behaviour. This study has successfully achieved the aim that cement replacement by FA and GGCS helps to improve the fibre/matrix interfacial properties and therefore enhances the ECC tensile behaviour. Specifically, a high volume FA-ECC has stable high tensile strain capacity at the age of 21 days. This enables a constant matrix design for the investigation of other matrix influences. The Slag-ECC has a higher tensile strength but lower tensile strain capacity. The combination of FA and GGCS, moderate tensile strength and strain capacity is achieved Both tensile tests and Micro-scale analyses infer that the high volume FA-ECC has an adhesive type fibre/matrix interfacial interaction, as opposed to the cohesive type of normal PVA fibre-ECC. The different tensile behaviour trend of steel fibre-ECC and PVA fibre-ECC with the FA content is presented and discussed in this research. The investigations of aging influence indicate that the high volume FA-ECC has a beneficial effect on the properties of the composite at an early stage. However, at a high age, it has some difficulty to undergo multiple cracking and then leads to the reduction of tensile strain capacity. The modified mix design is made with the combination of FA and GGCS, which successfully increases the interfacial bond and, thereby, improves the shear transfer to reach the matrix crack strength. Therefore, an improved high age tensile behaviour is achieved. The W/B and fresh state workability influence investigations show that the W/B can hardly affect the tensile strain at early age. However, the workability influences on composite tensile strain significantly, because of the influence on fibre dispersion. Other investigations with regard to the hybrid fibre influences, the comparison of bending behaviours between extruded plate and cast plate, the relation between bending MOR and tensile stress, and the relation between compression strength and tensile strength contribute to understand ECC behaviour. / AFRIKAANSE OPSOMMING: As ‘n veselversterkte materiaal, het ontwerpte sementbasis saamgestelde materiale, taai vervormingsverhardingseienskappe in trek, ten spyte van lae veselinhoud. Hierdie eienskap word bewerkstellig, deur ontwikkelings in vesel, matriks en tussenveselbindingseienskappe. Poli-Viniel Alkohol (PVA) vesels is ontwikkel vir ECC, as gevolg van die hoë trekkrag en hoë modulus van hierdie veseltipe. Die sterk binding tussen die PVA-veseloppervlak en die matriks is egter ‘n uitdaging vir sy toepassing. Hierdie studie fokus op die skep van gunstige matriks en vesel/matriks tussenvesel-bindingseienskappe deur sement te vervang met vlieg-as (FA) en slagment (GGCS).In hierdie navorsing is direkte trek-toetse, drie-punt-buigtoetse, mikro-skaal analise (soos die X-straal ‘Fluorescence Spectrometry’ analise (XRF) en Skanderende Elektron Mikroskoop (SEM))toegepas. Hierdie metodes is gebruik om die invloed van sementvervanging,veroudering, water/binder (W/B)-verhouding en werkbaarheid op die meganiese gedrag van ECC te ondersoek.Die resultate van hierdie navorsing toon dat sementvervanging deur FA en GGCS help om die vesel/matriks tussenveselbindingseienskappe te verbeter. Dus is die ECC-trekgedrag ook verbeter. Veral ‘n hoë volume FA-ECC het stabiele hoë trekvervormingskapasiteit op ‘n ouderdom van 21 dae. Dit bewerkstellig ‘n konstante matriksontwerp vir die navorsing van ander matriks invloede. Die Slag-ECC het ‘n hoër treksterkte, maar laer trekvervormingskapasiteit. Deur die kombinasie van FA en GGCS word hoë treksterkte, sowel as gematigde vervormbaarheid in trek verkry. Beide trektoetse en mikro-skaal analise dui aan dat die hoë volume FA-ECC ‘n adhesie-tipe vesel/matriks tussenvesel-bindingsinteraksie het, teenoor die ‘kohesie-tipe van normale PVA vesel-ECC. Die verskille in trekgedrag van staalvesel-ECC en PVA vesel-ECC ten opsigte van die FA-inhoud is ondersoek en word bespreek in die navorsing. Die navorsing toon verder dat die hoë volume FA-ECC goeie meganiese eienskappe het op ‘n vroeë ouderdom. Op hoër ouderdom word minder krake gevorm, wat ‘n verlaging in die trekvervormingskapasiteit tot gevolg het. Met die kombinasie van FA en GGCS, word die vesel-matriksverband verhoog, waardeur ‘n verbetering in die skuifoordrag tussen vesel en matriks plaasvind. Verbeterde hoë omeganiese gedrag word daardeur tot stand gebring. Navorsing ten opsigte van die invoed van die W/B en werkbaarheid dui daarop dat die W/B slegs geringe invloed het op die trekvormbaarheid, terwyl die werkbaarheid ‘n dominerende rol speel in hierdie verband.Verdere studies sluit in die invloed van verskillende vesels, die vergelyking van die buigingsgedrag van geëkstueerde plate en gegote plate, die verhouding tussen buigsterkte en treksterkte, en die verhouding tussen druksterkte en treksterkte dra by tot beter begrip van die gedrag van ECC.
6

Fabrication Characterisation and Optimisation of Electrospun Scaffolds for Ligament Tissue Reconstruction. The Development of an Anterior Cruciate Ligament (ACL) Analogue using Electrospun PCL, PVA Hydrogel and Polyester Sutures

Agbabiaka, Oluwadamilola A. January 2022 (has links)
Year 2019, football, rugby, netball and skiing had most occurring ACL injuries, listed by United Kingdom National Ligament Report (NLR). The standard procedure treatment of complete laceration of the ACL, is performed by tissue autograft implantation designed from a patellar tendon, for replacement of damaged tissue using orthopaedic surgery. The aim of this thesis is to design and fabricate an ACL graft, attempting to mimic the natural ACL, for the purpose of tissue reconstruction. The desired graft analogues exhibited properties imitating native connective tissue, reducing pain through drug delivery with great biocompatibility and enhance suture mechanical strength. Various biomaterials were implemented into this study, utilising strategies; polymer solution fabrication, electrospinning, hydrogel synthesis, mechanical braiding and graft assembly to fabricate an ACL graft. The polymeric material poly (E- caprolactone) (PCL) was researched, utilising its ability to fabricate scaffolds. Results showed, three analogue ACL grafts (Braided PCL-BP, Braided PCL + Hydrogel-BPH & Braided PCL + Sutures-BPS) created utilising the properties of braiding, hydrogels and sutures, ultimately improving the versatility of electrospinning for tissue engineering and reconstruction. Graft analogues were tested and compared against patellar tendons producing similar tensile properties. Poly vinyl alcohol (PVA) hydrogels successfully held ibuprofen, revealing drug delivery characteristics, polyester threads improved mechanical properties of electrospun grafts and dry degradation showed that PCL did not lose significant mass over two months. Conclusion, tensile strength of patella tendon was 395x, 790x & 56x of analogue grafts (BP, BPH & BPS) respectively, having potential for improvement of tensile parameters for ligament reconstruction.
7

DEVELOPMENT OF A TRANSPARENT AND DEFORMABLE TWO DIMENSIONAL RADIOCHROMIC GEL DOSIMETER

Ataei, Pouria 04 1900 (has links)
<p>Radiotherapy is used in many clinics to deliver a sufficient and uniform dose to the cancerous tumours while the dose to normal tissues is minimized. However, there is a possibility of missing the target volume due to patient set up/motion errors, or any fluctuation in treatment delivery. Therefore, accurate dose verification tools are essential to evaluate the delivered dose distribution of the designed treatment plan under realistic treatment conditions.</p> <p>Current research is focused on developing 3D dose verification tools to record the complex dose distributions for quality assurance purposes and the evaluation of new treatment techniques. New and novel materials and read-out techniques suitable for use in hospitals are desirable. The objective of this research is to fabricate a transparent radiochromic gel dosimeter that may be used as quality assurance tool. Also, the fabricated gel must be analyzed using a simple optical read-out technique.</p> <p>Gel dosimeters are gels that undergo some chemical changes upon irradiation as a function of absorbed dose. The absorbed dose may be recorded in three dimensions depending on the type of gel dosimeter. Radiochromic gels are dosimeters that change colour upon irradiation. A radiosensitive dye, leucomalachite green (LMG) is dissolved in a matrix material to record the dose distribution in 3D. LMG changes its colour upon irradiation, and has an absorbance band of 629nm.</p> <p>In this research two different matrix materials were investigated: poly (vinyl alcohol) and gelatin. PVA was studied as the primary agent due to its adjustable mechanical strength and high transparency. PVA has also been studied to have a low diffusion rate when it was used as the matrix material in Fricke gel dosimeters [41]. Even though PVA had all the desired characteristics, fabricating a PVA based radiochromic dosimeter was not successful. Consequently, gelatin was used as the matrix material to fabricate a gelatin-based radiochromic dosimeter.</p> <p>Using gelatin, highly transparent radiosensitive gels were successfully fabricated. The absorbencies of the irradiated gels were measured as a function of absorbed dose, using a 1D set up. After, the gels were formed into 5mm thick films and used as two-dimensional dose verification tools. The relationship between absorbance and absorbed dose for 1D measurement was obtained to be 0.00241± 0.00004 , and 0.0022 ± 0.00007 for 2D gels scaled to a thickness of 1 cm.</p> <p>In all of the experiments the absorbance-dose relationships were similar in slopes, but there was an offset between different batches. The offset was 20% between the different experiments. Moreover, there was less than 5% error associated with the physical set up; the major source of error was due to the production and handling of the mixture, possibly due to the effects of inconsistent heating and UV light exposure.</p> <p>The 2D gels were used to verify the dose distribution for the purpose of quality assurance. Six different complicated beams were delivered to the gels and their dose distributions were compared to their respective Pinnacle Calculated Planar (PCP) dose maps. The difference was found to be about 35% at worst; however, this error may be reduced by utilizing more sophisticated data processing methods. Nevertheless, the images were quite similar above 20Gy. Furthermore, the dose distributions recorded by the gels are qualitatively and quantitatively similar to the (PCP) dose map. Although the fabricated gel dosimeters show some promise as future tools for quality assurance purposes, they must go through many more stages of research to be used clinically.</p> / Master of Science (MSc)
8

Study on the effects of matrix properties on the mechanical properties of carbon fiber reinforced plastic composites / 炭素繊維強化複合材料の機械特性に及ぼす母材特性の影響に関する研究 / タンソ センイ キョウカ フクゴウ ザイリョウ ノ キカイ トクセイ ニ オヨボス ボザイ トクセイ ノ エイキョウ ニカンスル ケンキュウ

邵 永正, Yongzheng Shao 22 March 2015 (has links)
It was found that a significant improvement of mechanical properties of CFRPs can be achieved by the adjustment of the matrix properties such as toughness and CF/matrix adhesion via the chemical modification, as well as the physical modification by a small amount of cheap and environment-friendly nano fibers. Based on investigation of fracture mechanisms at macro/micro scale, the effects of matrix properties and nano fiber on the mechanical properties of CFRP have been discussed. Subsequently, the relationship has been characterized by a numerical model to show how to modulate the parameters of the matrix properties to achieve excellent fatigue properties of CFRP. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University

Page generated in 0.0487 seconds