• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • Tagged with
  • 24
  • 24
  • 13
  • 11
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Validation of conformal radiotherapy treatments in 3D using polymer gel dosimeters and optical computed tomography

Holmes, OLIVER 18 December 2008 (has links)
Polymer gel dosimeters are a three dimensional (3D) dosimetry system that may be conveniently applied for verifying highly conformal radiation therapies where standard dosimetry techniques are insufficient. Polymer gel dosimetry with optical computed tomography (OptCT) can be used to measure spatial dose distributions with high resolution. While long experience with MRI has yielded many studies reporting on experiments involving validation of clinical deliveries using polymer gel dosimeters, there are very few studies of this type where OptCT is used. OptCT is a relatively new technique and consequently has not yet been adopted into the clinical environment. As a result, methods and software tools for integrating OptCT measurements into clinical systems are not available. Previous studies from the Medical Physics research group at the Cancer Centre of Southeastern Ontario (CCSEO) and Queen’s University have therefore been limited to simple deliveries and two dimensional (2D) comparisons. In this thesis various software tools and calibration techniques have been developed to allow comparative analysis between OptCT measurements with dose distributions calculated by treatment planning software. Further, a modification of the γ-evaluation (Low et al. 1998) is presented whereby the vector components of γ are used to identify the sources of disagreement between compared dose distributions. Test simulations of the new γ-tool revealed that individual vector components of γ, as well as the resulting vector field can be used to identify certain types of disagreements between dose distributions: especially spatial misalignments caused by geometric misses. The polymer gel dosimetry tools and analysis software were applied to a clinical validation mimicking a prostate conformal treatment with patient setup correction using image guidance. In one experiment greater than 90 % agreement was found between dose distributions in 4%T 50%C NIPAM/Bis dosimeters (Senden et al. 2006) measured with the Vista OptCT unit and dose distributions calculated by Eclipse treatment planning software. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2008-12-18 15:46:33.78
2

Recipe improvement and mathematical modelling of polymer gel dosimeters

CHAIN, JONATHAN 03 February 2011 (has links)
A mathematical model for polymer gel dosimeters was extended to simulate the effects of radiation depth doses of various radiation beams on the mass of polymer formed. The influences of monomer diffusion and temperature variation were investigated and predicted by the model. Simulation results indicate that both diffusion and temperature effects are most noticeable at the depth of maximum dose. Diffusion effects are larger for steep depth-dose curves with large dose gradients, while temperature effects are larger for extensive depth-dose curves that deliver high doses of radiation to a greater depth. Based on simulation results, involving a maximum dose of 5 Gy, the amount of additional polymer formed due to diffusion is small, ranging from 0.1 % for 15 MV x-ray photons to 2.6 % for Co60 γ-radiation. This small amount of additional polymer should not cause significant problems for the accuracy of depth-dose calibration curves, particularly if the depth of maximum dose is avoided. Inaccuracies caused by temperature effects are expected to be smaller than those caused by diffusion. Experimental studies were undertaken to improve the radiation dose response using x-ray Computed Tomography (CT). A new polymer gel dosimeter recipe with enhanced dose response was achieved by using a large quantity of N-isopropyl acrylamide (NIPAM) (15 wt%) to help dissolve the N,N’-methylene bisacrylamide (Bis) crosslinker. The solubility of Bis was substantially increased, allowing for large quantities of dissolved NIPAM and Bis in the system. The new dosimeter exhibits an enhanced dose sensitivity and dose resolution for x-ray CT imaging, which holds promise for clinical applications. The dose resolution of approximately 0.1 Gy, for up to absorbed doses of 50 Gy, for the new recipe is superior to that for previous dosimeter formulations developed for x-ray CT. / Thesis (Master, Chemical Engineering) -- Queen's University, 2010-12-21 18:10:28.37
3

IMPROVED RECIPES FOR POLYMER GEL DOSIMETERS CONTAINING N-ISOPROPYLACRYLAMIDE

Koeva, VALERIYA 17 December 2008 (has links)
Experimental studies were undertaken to improve the radiation dose response and ease of manufacture of polymer gel dosimeters that use N-isopropyl acrylamide (NIPAM) as the monomer. An alternative carageenan gelling agent was tested in place of gelatin. Although the carageenan did reduce the gelling time for the dosimeter solution, the dose response of the dosimeters was unsatisfactory. An alternative antioxidant system, ascorbic acid and Cu2+, was investigated with the aim of reducing the toxicity of dosimeter materials and providing opportunities for commercial production of prepackaged dosimeter kits. Unfortunately, the new antioxidant was ineffective for the NIPAM-based dosimeters that were studied. Three cosolvents, glycerol, N-propanol and isopropanol, were used to increase the solubility of N,N’-methylene-bisacrylamide (Bis) crosslinker in polymer gel dosimeter recipes that use NIPAM. These cosolvents enabled the manufacture of polymer gel dosimeters with higher levels of dissolved crosslinker than was previously possible. Preliminary results using x-ray computed tomography to read the resulting gels are very promising, due to enhancements in dose sensitivity. Dosimeters with high N,N’-methylene-bisacrylamide content that used isopropanol or glycerol as cosolvents had good optical clarity prior to irradiation, but did not produce reliable optical CT results for non-uniformly-irradiated gels. Further experiments and recipe optimization are required to determine whether gels with cosolvents and high levels of N,N’-methylene bisacrylamide can be used effectively for verifying spatially non-uniform dose distributions using x-ray computed tomography. A mathematical model that includes inhibition of NIPAM-Bis polymerization was developed and the inhibition effects of MEHQ and oxygen in polymer gel dosimeters were simulated. Kinetic parameters were obtained from the literature and were estimated using experimental data obtained by our research group. Good agreement was obtained between model predictions and experimental data with and without oxygen contamination. Simulation results indicate that MEHQ has little influence on the duration of the inhibition period and the rate of polymerization when no oxygen contamination is present, so that removal of MEHQ from dosimeter recipes is not required. Effective oxygen removal is very important to achieve reliable dosimeter results. / Thesis (Master, Chemical Engineering) -- Queen's University, 2008-12-16 15:59:14.034
4

CONE BEAM OPTICAL COMPUTED TOMOGRAPHY-BASED GEL DOSIMETRY

OLDING, TIMOTHY 02 September 2010 (has links)
The complex dose distributions delivered by modern, conformal radiation therapy techniques present a considerable challenge in dose verification. Traditional measurement tools are difficult and laborious to use, since complete verification requires that the doses be determined in three dimensions (3D). The difficulty is further complicated by a required target accuracy of ± 5% for the dose delivery. Gel dosimetry is an attractive option for realizing a tissue-equivalent, 3D dose verification tool with high resolution readout capabilities. However, much important work remains to be completed prior to its acceptance in the clinic. The careful development of easily accessible, fast optical readout tools such as cone beam optical computed tomography (CT) in combination with stable and reliable low-toxicity gel dosimeters is one key step in this process. In this thesis, the performance capabilities and limitations of the two main classes of cone beam optical CT-based absorbing and scattering gel dosimetry are characterized, and their measurement improved through careful matching of dosimeter and scanner performance. These systems are then applied to the evaluation of clinically relevant complex dose distributions. Three-dimensional quality assurance assessments of complex treatment plan dose distributions are shown to be feasible using an optically absorbing Fricke-xylenol-orange-gelatin-based gel dosimeter. Better than 95% voxel agreement is achieved between the plan and the delivery, using 3% dose difference and 3 mm spatial distance-to-agreement gamma function comparison criteria. Small field dose delivery evaluations are demonstrated to be viable using an optically scattering N-isopropylacrylamide (NIPAM)-based polymer gel, with the same comparison criteria. Full treatment process quality assurance is also possible using a NIPAM dosimeter in-phantom, but is limited in its accuracy due to the inherent difficulty of managing the effects of stray light pertubation in the optical attenuation-to-dose calibration. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2010-09-02 15:01:48.501
5

An x-ray computed tomography polymer gel dosimetry system for complex radiation therapy treatment verification

Johnston, Holly A. 20 September 2013 (has links)
X-ray computed tomography (CT) polymer gel dosimetry (PGD) is an attractive tool for three-dimensional (3D) radiation therapy (RT) treatment verification due to the availability of CT scanners in RT clinics. Nevertheless, wide-spread use of the technique has been hindered by low signal-to-noise CT images largely resulting from gel formulations with low radiation sensitivity. However, a new gel recipe with enhanced dose sensitivity was recently introduced that shows great promise for use with CT readout. This dissertation describes development of an CT PGD system for 3D verification of RT treatments using the new gel formulation. The work is divided into three studies: gel characterization, commissioning of a multislice CT scanner and investigation of a dose rate dependence observed during gel characterization. The first component of this work examines the dosimetric properties of the new gel formulation. The response of the gel is found to be stable between 15 - 36 hours post-irradiation and excellent batch reproducibility is seen for doses between 0 - 28 Gy. A dose rate dependence is found for gels irradiated between 100 - 600 MU/min, indicating machine dose rate must be consistent for calibration and test irradiations to avoid dosimetric error. An example clinical application is also presented using an IMRT treatment verification that demonstrates the potential of the system for use in modern RT. The second component of this work focuses on commissioning a multislice CT scanner for CT PGD. A new slice-by-slice background subtraction technique is introduced to account for the anode heel effect. Additional investigations show recommendations for optimizing image quality in CT PGD using a single slice machine also apply to multislice scanners. In addition, the consistency of CT numbers across the multislice detector array is found to be excellent for all slice thicknesses. Further work is performed to assess the tube load characteristics of the scanner and develop a scanning protocol for imaging large gel volumes. Finally, images acquired throughout the volume of an unirradiated active gel show variations in CT data across each image on the order of 7 HU. However, these variations are not expected to greatly influence gel measurements as they are consistent throughout the gel volume. The third component of this work examines the dose rate dependence found during gel characterization. Studies using gel vials and 1 L cylinders indicate the response of the gel does not depend on changes in mean dose rate on the order of seconds to minutes. However, the machine dose rate remains, indicating variations in dose rate on the order of milliseconds influence the response of the gel. An attempt is made to mitigate the effect by increasing the concentration of antioxidant in the gel system but results in reduced overall response. Further work is performed to determine if self-crosslinking of one of the gel components contributes to the observed machine dose rate dependence. In summary, this dissertation has significantly advanced the field of gel dosimetry by providing a prototype CT PGD system with enhanced dose resolution for complex RT treatment verification. / Graduate / 0992 / 0495 / 0756 / holly.johnston@utsouthwestern.edu
6

Um estudo para otimização da formulação do dosímetro gel MAGIC-f e avaliação da sua reutilização / A study to optimize the formulation of the MAGIC-f dosimeter and evaluate its reuse

Resende, Thiago Dias 07 April 2017 (has links)
A radioterapia é um procedimento que utiliza radiação ionizante de alta energia direcionado ao tumor, para destruir suas células. O objetivo é provocar o maior dano nas células tumorais enquanto se poupa o tecido sadio ao redor, para maximizar este resultado. Devido a alta complexidade dos feixes usados nestes tratamentos, um dosímetro tridimensional é desejado para garantir que a dose esteja sendo entregue da forma como foi planejada, sendo a dosimetria gel polimérica com leitura da dose em Imagens de Ressonância Magnética Nuclear (IRMN), uma opção para esta medida. Esse trabalho utiliza o dosímetro gel polimérico MAGIC-f como referência e tem como objetivo otimizar sua formulação, substituindo inicialmente os seus agentes antioxidantes (sulfato de cobre e ácido ascórbico) por um antioxidante mais potente, o cloreto de tetrakishidroximetilfosfônio (THPC), e, em seguida, variar as concentrações dos demais componentes do dosímetro a fim de obter a menor concentração de cada um deles que resulte em um dosímetro com sensibilidade adequada para uso em radioterapia.Foram feitas análises sobre a estabilidade térmica do dosímetro com THPC e estudos sobre as concentrações ideais de THPC (2mM, 5mM, 8mM, 10mM ou 20mM); Ácido Metacrílico (2%, 2,5%, 3%, 3,5% ou 4%); Gelatina (4%, 6%, 8% ou 10%). Após todas as modificações, a formulação otimizada contendo 88,96% Água MiliQ; 3% Ácido Metacrílico; 8% Gelatina; 0,04% THPC (5mM de concentração), apresentou uma sensibilidade próxima a 1,03 Gy-1s-1 e um ponto de fusão de aproximadamente 50C, utilizando as menores quantidades possíveis dos reagentes químicos e a sequência de leitura das IRMN implementada para esta dosimetria. O dosímetro otimizado obtido teve uma redução de 40% no seu custo, em comparação com o dosímetro MAGIC-f, e uma resolução de dose de 0,18 Gy. Obteve linearidade de resposta a dosede 0 a 10 Gy. Uma variação máxima na sensibilidade do dosímetro de 8,5% foi encontrada ao se variar a taxa de dose de 300 500 cGy/min.Também foi avaliada a integridade da distribuição de dose para esse dosímetro através da avaliação de uma irradiação com meio campo blindado. E, sua a maior variação em um teste de repetitividade foi de 15%. Um outro objetivo deste trabalho foi o desenvolvimento de uma metodologia para a reutilização do dosímetro gel, sendo que um dosímetro previamente irradiado com uma dose de 2Gy foi reutilizado após seu derretimento a 50C em um forno com controle digital de temperatura, seguido por uma nova gelificação.Para garantir sua resposta, foi necessária a readição de agentes antioxidantes à formulação reutilizada. Dessa forma, para o gel MAGAT com 1mM de THPC foi obtida uma sensibilidade 30% menor que a original para o dosímetro reutilizado e 15% para o mesmo dosímetro, com 2mM de THPC / Radiotherapy is a procedure that uses high energy ionizing radiation directed to the tumor to destroy its cells. The objective is to obtain tumoral cells more damaged avoiding the healthy cells around it and increase this result. Due to the high complexity of the energy beams used on these treatments, a three-dimensional dosimeter is demanded to assure that the dose is focused as planned, being the polymeric gel dosimetry using Nuclear Magnetic Resonance Images (NMRI) for dose scanning an option to this measurement. This work uses MAGIC-f gel as reference and its objective is to optimize the dosimeter formulation, by initiallyreplacing the antioxidants agents (Copper Sulfate and Ascorbic Acid) by a more power rating antioxidant, Tetrakis (hydroxymethyl) phosphonium chloride (THPC), and then, variatingthe others dosimeter´s components concentration in order to obtain the smallest concentration of each one that result in an adequate dosimeter´ssensitivity for radiotherapy application. Studies were made to check the thermal stability of the gel containing THPC and studies were carried out about the ideals concentrations of THPC (2mM, 5mM, 8mM, 10mM or 20mM); Methacrylic Acid (2%, 2.5%, 3%, 3.5% or 4%); Gelatin (4%, 6%, 8% or 10%). After the modifications, the optimized formulation containing 88.96% of mili-Q water; 3% of methacrylic acid; 8% of gelatine; 0.04% of THPC (5mM) showed a sensitivity of approximately 1.03 Gy-1s-1 and a melting point approximately of 50°C, using the smallest possible chemical compounds concentrations and the NMRI scanning sequence implemented for this dosimetry. The optimized dosimeter obtained presents a 40% cost reduction, comparing with the dosimeter MAGIC-f, and a dose resolution of 0.18 Gy. The dosimeter responds linearlywith doses from 0 to 10 Gy. A maximal sensitivity variation of 8.5% was found when varing the dose rate from 300 to 500 cGy/min. Its dose integrity was checked by a half beam blocked irradiation. And its largestsensitivity variation at a repeatability test was 15%. The second objective of this work was the development of a methodology for reusing the dosimeter.The dosimeter previously irradiated with 2Gy was reused after being melted in a digitaltemperature control oven at 50°C, followed by the re-addition of THPC and a new gelation. The reused MAGAT gel dosimeter with 1mM of THPC presented 30% sensitivity reductioin when compared to the the same dosimeter before the reusing process, while the MAGAT gel with 2mMof THPC presented a reduction of only 15%
7

Um estudo para otimização da formulação do dosímetro gel MAGIC-f e avaliação da sua reutilização / A study to optimize the formulation of the MAGIC-f dosimeter and evaluate its reuse

Thiago Dias Resende 07 April 2017 (has links)
A radioterapia é um procedimento que utiliza radiação ionizante de alta energia direcionado ao tumor, para destruir suas células. O objetivo é provocar o maior dano nas células tumorais enquanto se poupa o tecido sadio ao redor, para maximizar este resultado. Devido a alta complexidade dos feixes usados nestes tratamentos, um dosímetro tridimensional é desejado para garantir que a dose esteja sendo entregue da forma como foi planejada, sendo a dosimetria gel polimérica com leitura da dose em Imagens de Ressonância Magnética Nuclear (IRMN), uma opção para esta medida. Esse trabalho utiliza o dosímetro gel polimérico MAGIC-f como referência e tem como objetivo otimizar sua formulação, substituindo inicialmente os seus agentes antioxidantes (sulfato de cobre e ácido ascórbico) por um antioxidante mais potente, o cloreto de tetrakishidroximetilfosfônio (THPC), e, em seguida, variar as concentrações dos demais componentes do dosímetro a fim de obter a menor concentração de cada um deles que resulte em um dosímetro com sensibilidade adequada para uso em radioterapia.Foram feitas análises sobre a estabilidade térmica do dosímetro com THPC e estudos sobre as concentrações ideais de THPC (2mM, 5mM, 8mM, 10mM ou 20mM); Ácido Metacrílico (2%, 2,5%, 3%, 3,5% ou 4%); Gelatina (4%, 6%, 8% ou 10%). Após todas as modificações, a formulação otimizada contendo 88,96% Água MiliQ; 3% Ácido Metacrílico; 8% Gelatina; 0,04% THPC (5mM de concentração), apresentou uma sensibilidade próxima a 1,03 Gy-1s-1 e um ponto de fusão de aproximadamente 50C, utilizando as menores quantidades possíveis dos reagentes químicos e a sequência de leitura das IRMN implementada para esta dosimetria. O dosímetro otimizado obtido teve uma redução de 40% no seu custo, em comparação com o dosímetro MAGIC-f, e uma resolução de dose de 0,18 Gy. Obteve linearidade de resposta a dosede 0 a 10 Gy. Uma variação máxima na sensibilidade do dosímetro de 8,5% foi encontrada ao se variar a taxa de dose de 300 500 cGy/min.Também foi avaliada a integridade da distribuição de dose para esse dosímetro através da avaliação de uma irradiação com meio campo blindado. E, sua a maior variação em um teste de repetitividade foi de 15%. Um outro objetivo deste trabalho foi o desenvolvimento de uma metodologia para a reutilização do dosímetro gel, sendo que um dosímetro previamente irradiado com uma dose de 2Gy foi reutilizado após seu derretimento a 50C em um forno com controle digital de temperatura, seguido por uma nova gelificação.Para garantir sua resposta, foi necessária a readição de agentes antioxidantes à formulação reutilizada. Dessa forma, para o gel MAGAT com 1mM de THPC foi obtida uma sensibilidade 30% menor que a original para o dosímetro reutilizado e 15% para o mesmo dosímetro, com 2mM de THPC / Radiotherapy is a procedure that uses high energy ionizing radiation directed to the tumor to destroy its cells. The objective is to obtain tumoral cells more damaged avoiding the healthy cells around it and increase this result. Due to the high complexity of the energy beams used on these treatments, a three-dimensional dosimeter is demanded to assure that the dose is focused as planned, being the polymeric gel dosimetry using Nuclear Magnetic Resonance Images (NMRI) for dose scanning an option to this measurement. This work uses MAGIC-f gel as reference and its objective is to optimize the dosimeter formulation, by initiallyreplacing the antioxidants agents (Copper Sulfate and Ascorbic Acid) by a more power rating antioxidant, Tetrakis (hydroxymethyl) phosphonium chloride (THPC), and then, variatingthe others dosimeter´s components concentration in order to obtain the smallest concentration of each one that result in an adequate dosimeter´ssensitivity for radiotherapy application. Studies were made to check the thermal stability of the gel containing THPC and studies were carried out about the ideals concentrations of THPC (2mM, 5mM, 8mM, 10mM or 20mM); Methacrylic Acid (2%, 2.5%, 3%, 3.5% or 4%); Gelatin (4%, 6%, 8% or 10%). After the modifications, the optimized formulation containing 88.96% of mili-Q water; 3% of methacrylic acid; 8% of gelatine; 0.04% of THPC (5mM) showed a sensitivity of approximately 1.03 Gy-1s-1 and a melting point approximately of 50°C, using the smallest possible chemical compounds concentrations and the NMRI scanning sequence implemented for this dosimetry. The optimized dosimeter obtained presents a 40% cost reduction, comparing with the dosimeter MAGIC-f, and a dose resolution of 0.18 Gy. The dosimeter responds linearlywith doses from 0 to 10 Gy. A maximal sensitivity variation of 8.5% was found when varing the dose rate from 300 to 500 cGy/min. Its dose integrity was checked by a half beam blocked irradiation. And its largestsensitivity variation at a repeatability test was 15%. The second objective of this work was the development of a methodology for reusing the dosimeter.The dosimeter previously irradiated with 2Gy was reused after being melted in a digitaltemperature control oven at 50°C, followed by the re-addition of THPC and a new gelation. The reused MAGAT gel dosimeter with 1mM of THPC presented 30% sensitivity reductioin when compared to the the same dosimeter before the reusing process, while the MAGAT gel with 2mMof THPC presented a reduction of only 15%
8

Caracterização do gel polimérico MAGIC-f para aplicação em medicina nuclear utilizando imagens de ressonância magnética / MAGIC-f Gel Polimeric Caracterization for Nuclear Medicine Aplication using Magnética Ressonance Image

Schwarcke, Marcelo Menna Barreto 18 October 2013 (has links)
Este trabalho visa aprimorar e tornar mais precisa a utilização do dosímetro gel polimérico MAGIC-f no estudo da distribuição de dose para fonte radioativas utilizadas na terapia e diagnóstico em medicina nuclear. Para isso foram avaliados os parâmetros de leitura do gel em equipamentos de ressonância magnética e sua resposta quando comparado a resultados obtidos através da utilização do código PENELOPE de simulação Monte Carlo. Dentre as incertezas observadas no processo global da utilização do gel MAGIC-f, sua manufatura foi a que demonstrou uma maior preocupação uma vez que erro na frações de componentes químicos adicionados ocasiona grande diferença na resposta do dosímetro. A aquisição da informação dosimétrica em um equipamento de imagem por ressonância magnética demonstrou que tempos ao eco mais curtos são mais eficientes na diferenciação do sinal gerado no processo de polimerização devido a utilização de fontes de medicina nuclear do que ajustes na resolução da imagem e que a homogeneidade de campo magnético pode ocasionar grande alteração nos valores obtidos. Experimentos realizados com o gel MAGIC-f, demonstraram um baixa dependência energética e um grande dependência com a taxa de dose, dois fatores importantes em medicina, mas resultados simulados e experimentais comparativos utilizando fontes de I-131, Tc-99m e F-18, demonstraram uma grande precisão nos resultados apresentados, tornando assim o gel MAGIC-f uma excelente ferramenta na verificação volumétrica da dose absorvida na terapia com fontes de medicina nuclear. / This work aims to improve and make more accurate use of the gel dosimeter MAGIC-f polymer in the study of dose distribution for radioactive source used in therapy and diagnosis in nuclear medicine. For this, MRI parameters reading of the gel were evaluated and its response when compared to results obtained using a Monte Carlo simulation PENELOPE code. Among the uncertainties observed in the overall use of MAGIC-f gel, its manufacturing demonstrated a greater concern since error in chemical fractions added causes big difference in the response of the dosimeter. The acquisition of dosimetric equipment information in a magnetic resonance imaging showed that the shorter eco times are more efficient in differentiating the signal generated in the polymerization process due to the use of sources of nuclear medicine than image resolution changes and the homogeneity of the magnetic field can cause large difference in the results. Experiments performed with the MAGIC-f gel, demonstrated a low energy dependence and a large dependence on the dose rate, two important factors in nuclear medicine, but comparative results with simulated and experimental processes using sources of I-131, Tc-99m and F-18 showed a great accuracy in results, thus making the MAGIC-f gel an excellent tool for volumetric verification of absorbed dose therapy with sources of nuclear medicine.
9

Assessment of X-ray computed tomography dose in normoxic polyacrylamide gel dosimetry

Baxter, Patricia 11 September 2008 (has links)
Polymer gel dosimetry, in conjunction with x-ray computed tomography (x-ray CT) imaging, is a three-dimensional dosimetric tool that shows promise in the verification of complex radiation therapy treatments. Previous studies have shown that x-ray CT imaging of gel dosimeters is robust, easy-to-use, and has wide clinical accessibility. The effects of x-ray CT dose imparted to the gel dosimeter, during imaging of the delivered therapy dose distributions, is not well understood. This thesis quantifies the effects of CT dose on normoxic polyacrylamide gel (nPAG) dosimeters. The investigation is comprised of four parts. First, quantification of the x-ray CT dose given during CT imaging of nPAG gels was measured using ion chamber measurements and filmed dose profiles for a range of typical gel dosimetry imaging protocols (200 mAs (current-time), 120-140 kVp (peak potential energy of photons), 2-10 mm slice thickness). It was found that CT doses ranged from 0.007 Gy/slice (120 kVp, 2 mm) to 0.021 Gy/slice (140 kVp, 10 mm) for volumetric phantoms. Second, Raman spectroscopy was used to determine the effect of photon energy on the dose response of nPAG dosimeters exposed to photon energies from a CT scanner (140 kVp photons) and from a Linac (6 MV photons). A weaker response was exhibited within the gels irradiated with kV photons than MV photons. Thirdly, the measurements of the given x-ray CT dose as established in the first study and the dose response of the polymer gel to different photon energies in the second study were correlated to estimate the induced changes of the nPAG CT number ("NCT ), caused by x-ray CT imaging of the polymer gel. (CT number is defined to be the measured attenuation coefficient normalized to water.) For typical gel imaging protocols (as above with 16-32 image averages), it was found that "NCT <0.2 H is induced in active nPAG gel dosimeters. This "NCT is below the current threshold of detectability of CT nPAG gel dosimetry. Finally, the traditional method of chemically fixing the dose response mechanism of nPAG gels by passive oxygenation of the gel, is investigated to determine if oxygenation would mitigate the changes caused by x-ray CT imaging of the gels. It was determined that oxygen diffusion was too slow to cause fixation of nPAG dosimeters, as the diffusion constant was 1.2 ± 0.2 × 10−6cm2/s, or 25% of the diffusion constant for anoxic PAG gel dosimeters. In conclusion, it was found that x-ray CT dose in polymer gel dosimeters is not a concern for standard gel imaging protocols. X-ray CT dose can potentially be a concern when large numbers of image averages (e.g. >60 image averages) are utilized, as in gel imaging protocols for high-resolution scans.
10

Imaging And Radiation Interactions Of Polymer Gel Dosimeters

Trapp, Jamie Vincent January 2003 (has links)
Aim: The past two decades have seen a large body of work dedicated to the development of a three dimensional gel dosimetry system for the recording of radiation dose distributions in radiation therapy. The purpose of much of the work to date has been to improve methods by which the absorbed dose information is extracted. Current techniques include magnetic resonance imaging (MRI), optical tomography, Raman spectroscopy, x-ray computed tomography (CT) and ultrasound. This work examines CT imaging as a method of evaluating polymer gel dosimeters. Apart from publications resulting from this work, there has been only two other journal articles to date reporting results of CT gel dosimetry. This indicates that there is still much work required to develop the technique. Therefore, the aim of this document is to develop CT gel dosimetry to the extent that it is of use to clinical and research physicists. Scope: Each chapter in this document describes an aspect of CT gel dosimetry which was examined; with Chapters 2 to 7 containing brief technical backgrounds for each aspect. Chapter 1 contains a brief review of gel dosimetry. The first step in the development of any method for reading a signal is to determine whether the signal can actually be obtained. However, before polymer gel dosimeters can be imaged using a CT scanner, imaging techniques are required which are employable to obtain reliable readings. Chapter 2 examines the various artifacts inherent in CT which interfere with the quantitative analysis of gel dosimeters and a method for their removal is developed. The method for artifact reduction is based on a subtraction technique employed previously in a feasibility study and a system is designed to greatly simplify the process. The simplification of the technique removes the requirement for accurate realignment of the phantom within the scanner and the imaging of calibration vials is enabled. Having established a method by which readings of polymer gel dosimeters can be obtained with CT, Chapter 3 examines the CT dose response. A number of formulations of polymer gel dosimeter are studied by varying the constituent chemicals and their concentrations. The results from this chapter can be employed to determine the concentration of chemicals when manufacturing a polymer gel dosimeter with a desired CT dose response. With the CT dose response characterised in Chapter 3, the macroscopic cause of the CT signal is examined in Chapter 4. To this end direct measurement of the linear attenuation coefficient is obtained with a collimated radiation source and detector. Density is measured by Archimedes' principle. Comparison of the two results shows that the cause of the CT signal is a density change and the implications for polymer gel dosimetry are discussed. The CT scanner is revisited in Chapter 5 to examine the CT imaging techniques required for optimal performance. The main limitation of the use of CT in gel dosimetry to date has been image noise. In Chapter 5 stochastic noise is investigated and reduced. The main source of non-stochastic noise in CT is found and imaging techniques are examined which can greatly reduce this residual noise. Predictions of computer simulations are verified experimentally. Although techniques for the reduction of noise are developed in Chapter 5, there may be situations where the noise must be further reduced. An image processing algorithm is designed in Chapter 6 which employs a combination of commonly available image filters. The algorithm and the filters are tested for their suitability in gel dosimetry through the use of a simulated dose distribution and by performing a pilot study on an irradiated polymer gel phantom. Having developed CT gel dosimetry to the point where a suitable image can be obtained, the final step is to investigate the uncertainty in the dose calibration. Methods used for calibration uncertainty in MRI gel dosimetry to date have either assumed a linear response up to a certain dose, or have removed the requirement for linearity but incorrectly ignored the reliability of the data and fit of the calibration function. In Chapter 7 a method for treatment of calibration data in CT gel dosimetry is proposed which allows for non-linearity of the calibration function, as well as the goodness of its fit to the data. Alternatively, it allows for the reversion to MRI techniques if linearity is assumed in a limited dose range. Conclusion: The combination of the techniques developed in this project and the newly formulated normoxic gels (not extensively studied here) means that gel dosimetry is close to becoming viable for use in the clinic. The only capital purchase required for a typical clinic is a suitable water tank, which is easily and inexpensively producible if the clinic has access to a workshop.

Page generated in 0.077 seconds