• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Élaboration de copolymères amphiphiles à base de poly (3-hydroxyalcanoate)s / Design of poly (3-hydroxyalkanoates)-based amphiphilic copolymers

Babinot, Julien 12 December 2012 (has links)
Les poly (3-hydroxyalcanoates) (PHAs) sont des polyesters aliphatiques produits et accumulés par des bactéries en tant que réserve de carbone et d'énergie. Ils sont constitués d'unités β-hydroxyesters et possèdent des chaînes latérales de longueur variable, pouvant être fonctionnalisées. Ils possèdent des propriétés de biodégradabilité et de biocompatibilité; ceci leur confère de vastes possibilités d'utilisation dans le domaine biomédical, notamment pour la mise au point de systèmes de libération contrôlée de principes actifs. Dans cette optique, nous nous sommes intéressés à la synthèse de copolymères amphiphiles de différentes architectures à base de PHAs, ainsi qu'à l'étude de leurs propriétés d'auto-association en milieu aqueux. Une méthode simple et efficace permettant le greffage d'oligomères de poly (éthylène glycol) (PEG) a tout d'abord été mise au point grâce à l'utilisation de la chimie « click ». Une série de copolymères diblocs bien définis PHA-b-PEG a ainsi pu être synthétisée par cycloaddition de Huisgen catalysée par le cuivre (CuAAC). Les copolymères diblocs à base de PHAs à moyennes chaînes latérales (PHA-mcl) ont montré leur capacité à s'auto-associer en milieu aqueux et à former des micelles monodisperses présentant une concentration micellaire critique très faible. Par la suite des copolymères de type greffés PHOU-g-PEG ont été synthétisés par addition thiol-ène. Les analyses par cryo microscopie électronique à transmission (cryo-TEM) ont montré que dans ce cas les copolymères s'auto-associaient en structures vésiculaires, ou polymersomes. Enfin, la synthèse de copolymères amphiphiles greffés porteurs de chaînes perfluorées PHOU-g-(F;PEG) a permis l'obtention de structures auto-associées plus complexes. Le cryo-TEM a en effet révélé la formation de micelles multicompartimentées, c'est à dire possédant un coeur présentant une séparation de phase entre les domaines hydrophobes et les domaines fluorés. Des tests biologiques préliminaires ont montré la cytocompatibilité de ces micelles / Poly (3-hydroxyalkanoates) are natural aliphatic polyesters produced and accumulated by many bacteria as carbon and energy supply. They consist of β-hydroxy ester units, with pendant side chains of different lengths that can be functionalized. Thanks to their biodegradability and biocompatibility, they are promising polymers for biomedical applications, especially for controlled drug delivery systems. In this context, we aimed to synthesize PHA-based amphiphilic copolymers with different molecular architectures, and to study their self-assembly in water. First, a simple and straightforward method using click chemistry has been used to graft poly(ethylene glycol) (PEG) oligomers. A series of well-defined diblock copolymers PHA-b-PEG has thus been synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC). Medium chain length PHA-based diblock copolymers have shown their ability to self-assemble into stable micelles having very low critical micelle concentrations. Afterwards, amphiphilic graft copolymers PHOU-g-PEG have been synthesized using thiol-ene addition. In this case, cryo-electron microscopy (cryo-TEM) analysis revealed that graft copolymers self-assembled into vesicular morphologies, i.e. in polymersomes. Finally, the synthesis of amphiphilic graft copolymers bearing perfluorinated chains PHOU-g-(F;PEG) was performed. After aqueous self-assembly, cryo-TEM shown the formation of multicompartment micelles, i.e. with a core displaying segregated hydrophobic and fluorophilic domains. Moreover, these multicompartment micelles have shown their cytocompatibility
2

Élaboration de nouveaux biopolyesters bactériens fonctionnalisés pour des applications dans le domaine biomédical / élaboration of new functionalized bacterial biopolyesters for biomedical applications

Lemechko, Pierre 13 July 2012 (has links)
Les poly(3-hydroxyalcanoate)s ou PHAs sont des biopolyesters linéaires biodégradables et biocompatibles synthétisés par des microorganismes bactériens en tant que réserve de carbone et d'énergie. Ils sont synthétisés par des bactéries à partir de ressources renouvelables et la diversité de leurs structures possibles se traduit par un large éventail de polymères ayant des propriétés mécaniques très différentes. Nous avons tout d'abord testé les capacités de production de PHAs de nouvelles souches bactériennes marines provenant de tapis microbiens de Polynésie française, en utilisant, entre autres, des substrats naturels comme l'huile de coprah, le glucose et l'acide oléique. Nous avons notamment montré que la souche Pseudomonas guezennei est capable de produire des PHAs avec des taux d'insaturation contrôlés et de masse molaire très élevée. Puis, des oligomères de PHAs fonctionnalisés de structures contrôlées portant des fonctions terminales alcynes ou alcènes ont été préparés par transestérification. Ces oligomères ont ensuite été utilisés pour l'élaboration par chimie click de copolymères amphiphiles greffés EPS-g-PHA avec des exopolysaccharides (EPS) bactériens. Enfin la dernière partie de ces travaux a consisté en la réalisation d'un support de croissance pour le développement de cellules souches pour l'ingénierie tissulaire combinant les propriétés mécaniques des PHAs et les propriétés hydrophiles et bioactives des EPS / Poly(3-hydroxyalkanoate)s, or PHAs, are linear biodegradable and biocompatible biopolyesters synthesized by bacterial microorganisms as energy and carbon supply. They are synthesized by bacteria from renewable resources and the diversity of the achievable structures leads to a large range of mechanical properties. First, we studied the PHAs production ability of several new marine bacteria strains, isolated from microbial mats from French Polynesia, using, among others, natural substrates such as coprah oil, glucose and oleic acid. We showed particularly that the strain Pseudomonas guezennei was able to produce PHAs with controlled amounts of insaturations and high molar masses. Then, we prepared functionalized PHAs oligomers with controlled structure and bearing a terminal alkyne or alkene function. Following that, these oligomers were used to elaborate amphiphilic by click chemistry graft copolymers EPS-g-PHA with bacterial exopolysaccharide (EPS). Finally, the last part of this work was the making of a scaffold for stem cell culture for tissue engineering which combined the mechanical properties of PHAs and the hydrophilicity and bioactive properties of EPS
3

Structures poreuses tridimensionnelles de biopolymères pour l'ingénierie tissulaire / porous three-dimensional structures of biopolymers for tissue engineering

Ramier, Julien 29 November 2012 (has links)
Les structures poreuses tridimensionnelles fonctionnelles possèdent un fort potentiel dans de nombreuses applications biomédicales. Nous avons ainsi orienté nos travaux vers l'élaboration de nouveaux matériaux capables de répondre à plusieurs critères pour l'ingénierie tissulaire osseuse. Du fait de leur biodisponibilité, leur biocompatibilité et leur biodégradabilité, les poly(3-hydroxyalcanoate)s (PHAs) présentent des propriétés particulièrement adaptées pour ce type d'application. Dans un premier temps, nous avons développé de nouvelles stratégies contrôlées, rapides et aisées, de synthèse de copolymères à blocs à base de PHAs ainsi que de production d'oligoesters par activation sous micro-ondes. Par ailleurs, l'absence d'effet « non-thermique » des micro-ondes sur la polymérisation par ouverture de cycles du D,L-lactide a également été démontrée grâce à une investigation systématique. Dans un second temps, l'élaboration de divers matériaux tridimensionnels nanofibreux par électrofilage (« electrospinning ») a été réalisée afin de fabriquer des structures à base de PHAs de différentes morphologies avec la formation de fibres dans une large gamme de diamètres ou encore avec des topographies de surface contrôlées (nanopores ou rainures). Plusieurs stratégies de fonctionnalisation superficielle ont été également mises au point telles que le dépôt de nanoparticules d'hydroxyapatite selon un procédé original couplant les techniques de l' « electrospinning » et de l' « electrospraying », ou encore le « co-electrospinning » de la gélatine. De nouvelles approches de couplage covalent de molécules en surface des fibres de PHAs par chimie « click » ou par ouverture de fonctions époxyde préalablement introduites ont également été développées. Enfin, des investigations biologiques in vitro ont permis de mettre en lumière les potentialités de ces nouveaux matériaux nanofibreux comme supports de culture cellulaire à travers l'évaluation de l'adhérence, la prolifération et la différentiation de cellules souches mésenchymateuses humaines (hMSCs) pluripotentes vers un phénotype ostéoblastique / Functional three-dimensional porous scaffolds possess a high potential in many biomedical applications. We have thus oriented our work toward the elaboration of new materials able to meet several criteria for bone tissue engineering. Due to their renewability, their biocompatibility, and their biodegradability, poly(3-hydroxyalkanoate)s (PHAs) exhibit properties particularly suitable for this type of application. First, we have developed novel controlled strategies that are rapid and straightforward for the synthesis of PHA-based block copolymers as well as for the production of oligoesters upon microwave activation. Moreover, the absence of “non-thermal” microwave effect in the ring-opening polymerization of D,L-lactide was also demonstrated through a systematic investigation. Second, the elaboration of miscellaneous three-dimensional nanofibrous materials by electrospinning has been performed to produce PHA-based frameworks with different morphologies through the formation of fibers in a wide range of diameters or with controlled surface topography (nanopores or channels). Several strategies for surface functionalization have also been implemented, such as the deposition of hydroxyapatite nanoparticles by an original combination of the electrospinning and electrospraying techniques or by the co-electrospinning of gelatin. New approaches toward covalent coupling of molecules on the PHA fiber surface by “click” chemistry or by ring-opening of previously introduced epoxide groups have also been developed. Lastly, in-vitro biological investigations have highlighted the potential of these new nanofibrous materials as cell culture supports through the evaluation of the adhesion, proliferation, and differentiation of pluripotent human mesenchymal stem cells (hMSCs) toward an osteoblastic phenotype

Page generated in 0.0703 seconds